Withdrawal: Design of high-lift airfoil for formula student race car

Author(s):  
Abdelrahman I. Yousry Mahgoub ◽  
Hashim Elzaabalawy ◽  
Walid A. Aboelsoud ◽  
Mohamed A. Abdelaziz
Keyword(s):  
Race Car ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 19-30
Author(s):  
Abdelrahman Ibrahim Mahgoub ◽  
Hashim El-Zaabalawy ◽  
Walid Aboelsoud ◽  
Mohamed Abdelaziz
Keyword(s):  

Author(s):  
Abdelrahman I. Yousry Mahgoub ◽  
Hashim Elzaabalawy ◽  
Walid A. Aboelsoud ◽  
Mohamed A. Abdelaziz
Keyword(s):  

2015 ◽  
Vol 46 (7) ◽  
pp. 619-629
Author(s):  
Albert Vasilievich Petrov ◽  
Vladimir Fedorovich Tretyakov

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 1884-1892
Author(s):  
Stuart E. Rogers ◽  
Karlin Roth ◽  
Steven M. Nash
Keyword(s):  

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 828
Author(s):  
Igor Rodriguez-Eguia ◽  
Iñigo Errasti ◽  
Unai Fernandez-Gamiz ◽  
Jesús María Blanco ◽  
Ekaitz Zulueta ◽  
...  

Trailing edge flaps (TEFs) are high-lift devices that generate changes in the lift and drag coefficients of an airfoil. A large number of 2D simulations are performed in this study, in order to measure these changes in aerodynamic coefficients and to analyze them for a given Reynolds number. Three different airfoils, namely NACA 0012, NACA 64(3)-618, and S810, are studied in relation to three combinations of the following parameters: angle of attack, flap angle (deflection), and flaplength. Results are in concordance with the aerodynamic results expected when studying a TEF on an airfoil, showing the effect exerted by the three parameters on both aerodynamic coefficients lift and drag. Depending on whether the airfoil flap is deployed on either the pressure zone or the suction zone, the lift-to-drag ratio, CL/CD, will increase or decrease, respectively. Besides, the use of a larger flap length will increase the higher values and decrease the lower values of the CL/CD ratio. In addition, an artificial neural network (ANN) based prediction model for aerodynamic forces was built through the results obtained from the research.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nick Le Large ◽  
Frank Bieder ◽  
Martin Lauer

Abstract For the application of an automated, driverless race car, we aim to assure high map and localization quality for successful driving on previously unknown, narrow race tracks. To achieve this goal, it is essential to choose an algorithm that fulfills the requirements in terms of accuracy, computational resources and run time. We propose both a filter-based and a smoothing-based Simultaneous Localization and Mapping (SLAM) algorithm and evaluate them using real-world data collected by a Formula Student Driverless race car. The accuracy is measured by comparing the SLAM-generated map to a ground truth map which was acquired using high-precision Differential GPS (DGPS) measurements. The results of the evaluation show that both algorithms meet required time constraints thanks to a parallelized architecture, with GraphSLAM draining the computational resources much faster than Extended Kalman Filter (EKF) SLAM. However, the analysis of the maps generated by the algorithms shows that GraphSLAM outperforms EKF SLAM in terms of accuracy.


Sign in / Sign up

Export Citation Format

Share Document