unsteady pressure measurements
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Richard Jackson ◽  
Hui Tang ◽  
James Scobie ◽  
Oliver Pountney ◽  
Carl Sangan ◽  
...  

Abstract The flow in the heated rotating cavity of an aero-engine compressor is driven by buoyancy forces, which result in pairs of cyclonic and anticyclonic vortices. The resultant cavity flow field is three-dimensional, unsteady and unstable, which makes it challenging to model the flow and heat transfer. In this paper, properties of the vortex structures are determined from novel unsteady pressure measurements collected on the rotating disc surface over a range of engine-representative parameters. These measurements are the first of their kind with practical significance to the engine designer and for validation of computational fluid dynamics. One cyclonic/anticyclonic vortex pair was detected over the experimental range, despite the measurement of harmonic modes in the frequency spectra at low Rossby numbers. It is shown that these modes were caused by unequal size vortices, with the cyclonic vortex the larger of the pair. The structures slipped relative to the discs at a speed typically around 10% to 15% of that of the rotor, but the speed of precession was often unsteady. The coherency, strength and slip of the vortex pair increased with the buoyancy parameter, due to the stronger buoyancy forces, but they were largely independent of the rotational Reynolds number.


2021 ◽  
Vol 5 ◽  
pp. 111-125
Author(s):  
Arijit Roy ◽  
Jens Fridh ◽  
James Scobie ◽  
Carl Sangan ◽  
Gary Lock

This paper investigates flow instabilities inside the cavity formed between the stator and rotor disks of a high-speed turbine rig. The cavity rim seal is of chute seal design. The influence of flow coefficient on the sealing effectiveness at constant purge flow rate through the wheel-space is determined. The effectiveness at different radial positions over a range of purge flow conditions and flow coefficients is also studied. Unsteady pressure measurements have identified the frequency of instabilities that form within the rim seal, phenomena which have been observed in other studies. Frequencies of these disturbances, and their correlation in the circumferential direction have determined the strength and speed of rotation of the instabilities within the cavity. Large scale unsteady rotational structures have been identified, which show similarity to previous studies. These disturbances have been found to be weakly dependent on the purge flow and flow coefficients, although an increased purge reduced both the intensity and speed of rotation of the instabilities. Additionally, certain uncorrelated disturbances have been found to be inconsistent (discontinuous) with pitchwise variation.


Author(s):  
Joachim Klinner ◽  
Melanie Voges ◽  
Michael Schroll ◽  
Alessandro Bassetti ◽  
Christian Willert

We report on combined velocity and unsteady pressure measurements obtained on an radial compressor with vaneless diffuser and asymmetric volute. Time-resolved PIV recordings were acquired at 26 kHz both upstream of the impeller as well as within the vaneless diffusor at several rotation speeds at clean conditions and prior to the onset of instabilities within the rotor. The velocity data was acquired with a high-repetition rate, double-pulse laser system consisting of two combined DPSS lasers and a high-speed CMOS camera that was synchronized with multi-point unsteady pressure measurements. Details on the facility, the utilized instrumentation and data processing are provided with particular focus on the spectral and coherence analysis. Power spectra obtained from time records of the inlet velocity and unsteady pressure reveal an increase of low-frequency fluctuations below the blade passing frequency and the occurrence of a mode-locked behaviour indicating the presence of rotating instabilities. High levels of correlation between velocity and unsteady pressure signals not only confirm the temporal coherence of the acquired data but also reveal a direct coupling between flow field and pressure signature that is more prominent upstream of the rotor rather than in the diffusor.


2021 ◽  
Author(s):  
Richard W. Jackson ◽  
Hui Tang ◽  
James A. Scobie ◽  
Oliver J. Pountney ◽  
Carl M. Sangan ◽  
...  

Abstract The flow in the heated rotating cavity of an aero-engine compressor is driven by buoyancy forces, which result in pairs of cyclonic and anticyclonic vortices. The resultant cavity flow field is three-dimensional, unsteady and unstable, which makes it challenging to model the flow and heat transfer. In this paper, properties of the vortex structures are determined from novel unsteady pressure measurements collected on the rotating disc surface over a range of engine-representative parameters. These measurements are the first of their kind with practical significance to the engine designer and for validation of computational fluid dynamics. One cyclonic/anticyclonic vortex pair was detected over the experimental range, despite the measurement of harmonic modes in the frequency spectra at low Rossby numbers. It is shown that these modes were caused by unequal size vortices, with the cyclonic vortex the larger of the pair. The structures slipped relative to the discs at a speed typically around 10% to 15% of that of the rotor, but the speed of precession was often unsteady. The coherency, strength and slip of the vortex pair increased with the buoyancy parameter, due to the stronger buoyancy forces, but they were largely independent of the rotational Reynolds number.


Author(s):  
Manas MP ◽  
Arghya Karmakar ◽  
Pradeep A M

Abstract In the present experimental study, a low aspect ratio, low hub-tip ratio contra-rotating axial fan is investigated to understand its performance under windmilling conditions. Two configurations are tested; in the first configuration (event A), the front rotor of the contra-rotating fan is powered and the rear rotor is allowed to windmill; in the second configuration (event B), the rear rotor of the contra-rotating fan is powered and the front rotor is allowed to windmill. The spanwise distribution of the loading coefficient and the flow angles at different streamwise positions reveal the details of the flow development across the rotors. Though the average total pressure drops across the windmilling rotor for both the events, a small spanwise region behaves as a fan or a stirrer. Thus, a "neutral radius" on the windmilling rotor is identified for both events A and B. The neutral radius appears close to the tip for event A and it appears close to the hub for event B and the neutral radius shifts its position to a lower span location as the flow coefficient reduces. On the windmilling rotor, the span regions close to the tip for event A behaves as a fan and the span regions close to the hub for event B behaves as a stirrer. Further, the unsteady pressure measurements recorded at the casing captures the fundamental phenomena during the stall inception. The paper thus relates the similarities and unveils the contrasting features of the windmilling events A and B.


Author(s):  
Yu Wan ◽  
Marco Manfredi ◽  
Angelo Pasini ◽  
Zoltan Spakovszky

Abstract Cavitation dynamics continue to pose a significant risk in the development and operation of launch vehicle (LV) propulsion systems. In addition to generating unsteady loads that can directly damage turbopump hardware, cavitation dynamics often couple with LV fluid feed systems, producing system wide POGO instability that can cause catastrophic failures. Despite its importance, the current understanding of cavitation dynamics, and especially pump transfer matrices, is limited. Given the relatively sparse amount of inducer transfer matrix data available, there is a critical need for more in-depth characterization of the cavitation dynamics in turbopump inducers to avoid POGO instability. This paper defines and validates a new reduced-order approach to infer key parameters such as cavitation compliance, K, and mass flow gain factor, M, from simple, single sensor unsteady pressure measurements during inducer inlet pressure ramps. The utility of this approach is demonstrated for a range of inducer geometries reported in the literature. The results are in agreement with experimental data and the paper provides a new capability supporting the assessment of launch vehicle POGO instability


Author(s):  
VS Saranyamol ◽  
Priyank Kumar ◽  
Sudip Das

Experimental studies on open cavity flows at supersonic speed of M = 2.0 were carried out. Oil flow visualization tests were made to understand the steady features of the surface flow field. Unsteady pressure measurements were done at five locations inside the cavity and pressure spectrum of these measurements were obtained. Cavity floor was made inclined to influence the flow directing towards the cavity leading edge with both, a favourable and adverse slope, by giving a positive and negative inclination angles to the floor, respectively. It is observed that the negative inclinations to the cavity floor behaves in a similar way to the base cavity, but a positive inclination helps to reduce the fluctuating pressures by 80% and reduce OASPL to the order of 14 dB and more.


Author(s):  
Y. Wan ◽  
M. Manfredi ◽  
A. Pasini ◽  
Z. Spakovszky

Abstract Cavitation dynamics continue to pose a significant risk in the development and operation of launch vehicle (LV) propulsion systems. In addition to generating unsteady loads that can directly damage turbopump hardware, cavitation dynamics often couple with LV fluid feed systems, producing system wide POGO instability that can cause catastrophic failures. Despite its importance, the current understanding of cavitation dynamics, and especially pump transfer matrices, is limited. Given the relatively sparse amount of inducer transfer matrix data available, there is a critical need for more in-depth characterization of the cavitation dynamics in turbopump inducers to avoid POGO instability. This paper defines and validates a new reduced-order approach to infer key parameters such as cavitation compliance, K, and mass flow gain factor, M, from simple, single sensor unsteady pressure measurements during inducer inlet pressure ramps. The utility of this approach is demonstrated for a range of inducer geometries reported in the literature. The results are in agreement with experimental data and the paper provides a new capability supporting the assessment of launch vehicle POGO instability.


Author(s):  
Manas Madasseri Payyappalli ◽  
Arghya Karmakar ◽  
A. M. Pradeep

Abstract In the present experimental study, a low aspect ratio, low hub-tip ratio contra-rotating axial fan is investigated to understand its performance under windmilling conditions. Two configurations are tested; in the first configuration (event A), the front rotor of the contra-rotating fan is powered and the rear rotor is allowed to windmill; in the second configuration (event B), the rear rotor of the contra-rotating fan is powered and the front rotor is allowed to windmill. The spanwise distribution of the loading coefficient and the flow angles at different streamwise positions reveal the details of the flow development across the rotors. The performances of event A and event B are nearly similar; however, event A stalls earlier than event B. Though the average total pressure drops across the windmilling rotor for both the events, a small spanwise region behaves as a fan or a stirrer. Thus, a “neutral radius” on the windmilling rotor is identified for both events A and B. The neutral radius appears close to the tip for event A and it appears close to the hub for event B. On the windmilling rotor in either events, the span regions close to the tip for event A behaves as a fan and the span regions close to the hub for event B behaves as a stirrer. It is also observed that the neutral radius shifts its position to a lower span location as the flow coefficient reduces. Thus, the flow coefficient is a significant parameter that decides the position of the neutral radius. Further, the unsteady pressure measurements recorded at the casing captures the fundamental phenomena during the stall inception. The paper thus relates the similarities and unveils the contrasting features of the windmilling events A and B. In summary, this paper discusses the performance, flow physics and stall inception characteristics of a contra-rotating axial fan under windmilling conditions.


Sign in / Sign up

Export Citation Format

Share Document