transient techniques
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Anantharaj Sengeni ◽  
Subrata Kundu ◽  
Suguru Noda

Abstract Cyclic and linear sweep voltammetry techniques substantially misjudge the performance of water splitting electrocatalysts due to their transient nature that forbids the interface from reaching a steady-state. This misjudgment leads to the potentially detrimental yet unwittingly falsified data accumulation in the literature that requires immediate attention. Alternatively, sampled-current voltammetry (SCV) constructed from steady-state responses is advised to be widely adopted for screening electrocatalysts that are actually destined for steady-state operations. To show that this exaggeration is universal, a well-characterized activated SS, coprecipitated Co(OH)2, and Pt foil electrodes are studied for OER and HER in 1.0 M KOH. The results urge that it is time to adopt a relatively more precise alternative technique such as SCV.


2021 ◽  
Vol 149 ◽  
pp. 106237
Author(s):  
M.A. Vasiliades ◽  
C.M. Damaskinos ◽  
P. Djinović ◽  
A. Pintar ◽  
A.M. Efstathiou

2020 ◽  
Vol 41 (11) ◽  
pp. 112402
Author(s):  
Lin Cheng ◽  
Kui Tang ◽  
Wang-Hung Ki ◽  
Feng Su

Author(s):  
Евгения Валерьевна Бедова ◽  
Евгения Андреевна Тонких ◽  
Олег Александрович Козадеров

Показано, что фазовое превращение палладия в собственную фазу при селективном растворении сплава Ag15Pd протекает в режиме мгновенной нуклеации и лимитируется поверхностной диффузией ад-атомов Pd к растущему трехмерному зародышу новой фазы. С применением нестационарных электрохимических методов установлены кинетические закономерности процесса электроокисления муравьиной кислоты на сплаве Ag15Pd, подвергнутом предварительному селективному растворению. Найдено, что процесс анодной деструкции НСООН в кислом сульфатном растворе протекает с более высокой скоростью на анодно-модифицированном сплаве Ag15Pd, поверхность которого морфологически развита и обогащена палладием в результате потенциостатическогоселективного растворения при закритических условиях поляризации. Процесс электроокисления НСООН является нестационарным, протекает в смешанно-кинетическом режиме и ускоряется с ростом анодного потенциала. С применением метода хроноамперометрии найдены кинетические токи анодного окисления муравьиной кислоты. Обнаружена корреляция между значением электрического заряда, пропущенного при предварительной анодной модификации сплава Ag15Pd и скоростью кинетической стадии электроокисления НСООН.         ЛИТЕРАТУРА 1. Бедова Е. В., Козадеров О. А. Кинетика электроокисления муравьиной кислоты на анодно-модифицированных серебряно-палладиевых сплавах. Электрохимическая энергетика. 2018;18(3): 141–154. DOI: https://doi.org/10.18500/1608-4039-2018-18-3-141-1542. Маршаков И. К, Введенский А. В., Кондрашин В. Ю., Боков Г. А. Анодное растворение и селективная коррозия сплавов. Воронеж: Изд-во Воронеж. гос. ун-та; 1988. 208 с.3. Encyclopedia of electrochemistry. Vol. 4. Corrosion and oxide fi lms. Eds. A. J. Bard, M. Stratmann, G. S. Frankel. Weinheim (Germany): Wiley-VCH; 2003. 755 p.4. Landolt D. Corrosion and Surface Chemistry of Metals. EPFL Press; 2007. 632 c.5. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. М.: Металлургия; 1984. 400 с.6. Маршаков И. К. Термодинамика и коррозия сплавов. Воронеж: Изд-во Воронеж. гос. ун-та; 1983. 168 с.7. Козадеров О. А. Массоперенос, фазообразование и морфологическая нестабильность поверхностного слоя при селективном растворении гомогенных металлических сплавов: дис. ... докт. хим. наук. Воронеж; 2016. 361 с. Режим доступа: http://www.science.vsu.ru/disserinfo&cand=28978. Зарцын И. Д., Введенский А. В., Маршаков И. К. О неравновесности поверхностного слояпри анодном растворении гомогенных сплавов Электрохимия. 1994;30(4): 544–565. Режим доступа:https://www.elibrary.ru/item.asp?id=238281399. Зарцын И. Д., Введенский А. В., Маршаков И. К. О превращениях благородной компоненты при селективном растворении гомогенного сплава в активном состоянии. Защита металлов.1991;27(1): 3–12. Режим доступа: https://www.elibrary.ru/item.asp?id=2395144310. Зарцын И. Д., Введенский А. В., Маршаков И. К. Термодинамика неравновесных фазовыхпревращений при селективном растворении гомогенных бинарных сплавов Защита металлов.1991;27(6): 883–891. Режим доступа: https://www.elibrary.ru/item.asp?id=1271261511. Козадеров О. А., Введенский А. В. Массоперенос и фазообразование при анодном селективномрастворении гомогенных сплавов. Воронеж: Научная книга; 2014. 288 с.12. Liu W. B., Zhang S. C., Li N., Zheng J. W., An S. S., Xing Y. L. A general dealloying strategy tonanoporous intermetallics, nanoporous metals with bimodal, and unimodal pore size distributions Corro-sion Science. 2012;58: 133–138. DOI:  https://doi.org/10.1016/j.corsci.2012.01.02313. Hakamada M., Chino Y., Mabuchi M. Nanoporous surface fabricated on metal sheets by alloying/dealloying technique. Materials Letters. 2010;64(21):2341–2343. DOI: https://doi.org/10.1016/j.matlet.2010.07.04614. Weissmüller J., Newman R. C., Jin Hai-Jun, Hodge A. M. Nanoporous metals by alloy corrosion:Formation and mechanical properties. MRS Bull. 2009;34(8): 577–586. DOI: https://doi.org/10.1557/mrs2009.15715. Erlebacher J., Aziz M. J., Karma A., Dimitrov N., Sieradzki K. Evolution of nanoporosity in dealloying.Nature. 2001;410(6827): 450–453. DOI: https://doi.org/10.1038/3506852916. Wang Y., Wu B., Gao Y., Tang Y., Lu T., Xing W., Liu Ch. Kinetic study of formic acid oxidation on carbonsupported Pd electrocatalyst. Journal of Power Sources. 2009;192(2): 372–375. DOI: https://doi.org/10.1016/j.jpowsour.2009.03.02917. Rice C., Ha S., Masel R.I., Waszczuk P., Wieckowski A., Barnard T. Direct formic acid fuel cells. J.Power Sources. 2002;111(1): 83–89. DOI: https://doi.org/10.1016/S0378-7753(02)00271-918. Rice C. A., Wieckowski A. Electrocatalysis of formic acid oxidation. In: Shao M. (eds.) Electrocatalysisin Fuel Cells. Lecture Notes in Energy. London: Springer; 2013:9. 43–67. DOI: https://doi.org/10.1007/978-1-4471-4911-819. Jiang K., Zhang H., Zou Sh., Cai W. Electrocatalysis of formic acid on palladium and platinumsurfaces: from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014;16. 20360–20376. DOI: https://doi.org/10.1039/C4CP03151B20. Хансен М., Андерко К. Структуры двойных сплавов: Справочник. М.: Металлургиздат; 1962;1.608 с.21. Исаев В. А. Электрохимическое фазообразование. Екатеринбург: УрО РАН; 2007. 123 с.22. MacDonald D. D. Transient techniques is electrochemistry. New York; London: Plenum Press; 1977.329 p. DOI: https://doi.org/10.1007/978-1-4613-4145-1


Author(s):  
Emilio Palomares ◽  
Núria F. Montcada ◽  
María Méndez ◽  
Jesús Jiménez-López ◽  
Wenxing Yang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 33 (31) ◽  
pp. 75-85 ◽  
Author(s):  
Andrew C. Chien ◽  
Tritti Siengchum ◽  
Steven Chuang

Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 621 ◽  
Author(s):  
Constantinos M. Damaskinos ◽  
Michalis A. Vasiliades ◽  
Vassilis N. Stathopoulos ◽  
Angelos M. Efstathiou

The present work discusses the effect of CeO2 synthesis method (thermal decomposition (TD), precipitation (PT), hydrothermal (HT), and sol-gel (SG)) on the carbon pathways of dry reforming of methane with carbon dioxide (DRM) applied at 750 °C over 5 wt% Ni/CeO2. In particular, specific transient and isotopic experiments (use of 13CO, 13CO2, and 18O2) were designed and conducted in an attempt at providing insights about the effect of support’s preparation method on the concentration (mg gcat−1), reactivity towards oxygen, and transient evolution rates (μmol gcat−1 s−1) of the inactive carbon formed under (i) CH4/He (methane decomposition), (ii) CO/He (reverse Boudouard reaction), and (iii) the copresence of the two (CH4/CO/He, use of 13CO). Moreover, important information regarding the relative contribution of CH4 and CO2 activation routes towards carbon formation under DRM reaction conditions was derived by using isotopically labelled 13CO2 in the feed gas stream. Of interest was also the amount, and the transient rate, of carbon removal via the participation of support’s labile active oxygen species.


Sign in / Sign up

Export Citation Format

Share Document