scholarly journals Turbulent Flow Field Measurements of Separate Flow Round and Chevron Nozzles with Pylon Interaction Using Particle Image Velocimetry

Author(s):  
Michael Doty ◽  
Brenda Henderson ◽  
Kevin Kinzie
2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Alexandros Terzis ◽  
Christoforos Skourides ◽  
Peter Ott ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand

Integrally cast turbine airfoils with wall-integrated cooling cavities are greatly applicable in modern turbines providing enhanced heat exchange capabilities compared to conventional cooling passages. In such arrangements, narrow impingement channels can be formed where the generated crossflow is an important design parameter for the achievement of the desired cooling efficiency. In this study, a regulation of the generated crossflow for a narrow impingement channel consisting of a single row of five inline jets is obtained by varying the width of the channel in the streamwise direction. A divergent impingement channel is therefore investigated and compared to a uniform channel of the same open area ratio. Flow field and wall heat transfer experiments are carried out at engine representative Reynolds numbers using particle image velocimetry (PIV) and liquid crystal thermography (LCT). The PIV measurements are taken at planes normal to the target wall along the centerline for each individual jet, providing quantitative flow visualization of jet and crossflow interactions. The heat transfer distributions on the target plate of the channels are evaluated with transient techniques and a multilayer of liquid crystals (LCs). Effects of channel divergence are investigated combining both the heat transfer and flow field measurements. The applicability of existing heat transfer correlations for uniform jet arrays to divergent geometries is also discussed.


2000 ◽  
Author(s):  
Shankar Devasenathipathy ◽  
Joshua I. Molho ◽  
James C. Mikkelsen ◽  
Juan G. Santiago ◽  
Kohsei Takehara

Abstract A micron-resolution particle image velocimetry (PIV) system has been developed to spatially and temporally resolve electroosmotic flow fields within microfluidic bioanalytical devices. A second diagnostic technique, particle tracking velocimetry (PTV) has been used to determine the distribution of electrophoretic mobilities of seed particles and thereby make the PIV measurements quantitative. This second particle tracking technique has been used to determine probability distribution functions of the seed particles. Results from simulations of electric fields yield local electric field strengths in the geometries of interest. The measured mean mobility of the seed particles (obtained from PTV measurements) is then multiplied by the local electric field vector to obtain the electrophoretic velocity. The variance on the particle mobility measurement influences the errors introduced in the electroosmotic flow measurements. After total particle velocities are measured within a microfluidic system of interest, the seed particle electrophoretic velocities are subtracted from the PIV total velocity data to obtain electroosmotic flow field velocities. Ensemble-averaged velocity field measurements for electroosmotic flow at the intersection of a cross-channel are presented.


2019 ◽  
Vol 46 (2) ◽  
pp. 0204007
Author(s):  
栾昆鹏 Luan Kunpeng ◽  
叶景峰 Ye Jingfeng ◽  
王晟 Wang Sheng ◽  
沈炎龙 Shen Yanlong ◽  
赵柳 Zhao Liu ◽  
...  

Author(s):  
Deb Banerjee ◽  
Ahmet Selamet ◽  
Rick Dehner ◽  
Keith Miazgowicz

Abstract Particle Image Velocimetry has become a desirable tool to investigate turbulent flow fields in different engineering applications, including flames, combustion engines, and turbomachinery. The convergence characteristics of turbulent statistics of these flow fields are of prime importance since they help with the number of images (temporally uncorrelated) to be captured in order for the results to converge to a certain tolerance or with the assessment of the uncertainty of the measurements for a given number of images. The present work employs Stereoscopic Particle Image Velocimetry to examine the turbulent flow field at the inlet of an automotive turbocharger compressor without any recirculating channel. Optical measurements were conducted at five different mass flow rates spanning from choke to surge at a corrected rotational speed of 80 krpm. The velocity fields thus obtained were used to analyze the convergence of the mean (first statistical moment) and variance (second statistical moment) at different operating conditions. The convergence of the mean at a particular location in the flow field depends on the local coefficient of variation (COV). The number of required images for the mean to converge to a particular tolerance was also found to follow roughly a linear trend with respect to COV. While the convergence of the variance, on the other hand, did not appear to show any direct dependence on the coefficient of variation, it takes significantly more images than the mean to converge to the same level of tolerance.


2021 ◽  
Vol 11 (24) ◽  
pp. 11615
Author(s):  
Björn Espenhahn ◽  
Lukas Schumski ◽  
Christoph Vanselow ◽  
Dirk Stöbener ◽  
Daniel Meyer ◽  
...  

For industrial grinding processes, the workpiece cooling by metalworking fluids, which strongly influences the workpiece surface layer quality, is not yet fully understood. This leads to high efforts for the empirical determination of suitable cooling parameters, increasing the part manufacturing costs. To close the knowledge gap, a measurement method for the metalworking fluid flow field near the grinding wheel is desired. However, the varying curved surfaces of the liquid phase result in unpredictable light deflections and reflections, which impede optical flow measurements. In order to investigate the yet unknown optical measurement capabilities achievable under these conditions, shadowgraphy in combination with a pattern correlation technique and particle image velocimetry (PIV) are applied in a grinding machine. The results show that particle image velocimetry enables flow field measurements inside the laminar metalworking fluid jet, whereby the shadowgraph imaging velocimetry complements these measurements since it is in particular suitable for regions with spray-like flow regimes. As a conclusion, optical flow field measurements of the metalworking fluid flow in a running grinding machine are shown to be feasible.


Sign in / Sign up

Export Citation Format

Share Document