Compressible Mixing Layer Experiments for CFD Validation

2019 ◽  
Author(s):  
J C. Dutton ◽  
Greg S. Elliott ◽  
Kevin Kim
1991 ◽  
Vol 224 ◽  
pp. 159-175 ◽  
Author(s):  
T. L. Jackson ◽  
C. E. Grosch

We report the results of a comprehensive comparative study of the inviscid spatial stability of a parallel compressible mixing layer using various models for the mean flow. The models are (i) the hyperbolic tangent profile for the mean speed and the Crocco relation for the mean temperature, with the Chapman viscosity–temperature relation and a Prandtl number of one; (ii) the Lock profile for the mean speed and the Crocco relation for the mean temperature, with the Chapman viscosity-temperature relation and a Prandtl number of one; and (iii) the similarity solution for the coupled velocity and temperature equations using the Sutherland viscosity–temperature relation and arbitrary but constant Prandtl number. The purpose of this study was to determine the sensitivity of the stability characteristics of the compressible mixing layer to the assumed thermodynamic properties of the fluid. It is shown that the qualitative features of the stability characteristics are quite similar for all models but that there are quantitative differences resulting from the difference in the thermodynamic models. In particular, we show that the stability characteristics are sensitive to the value of the Prandtl number and to a particular value of the temperature ratio across the mixing layer.


1998 ◽  
Vol 356 ◽  
pp. 25-64 ◽  
Author(s):  
M. F. MILLER ◽  
C. T. BOWMAN ◽  
M. G. MUNGAL

Experiments were conducted to investigate the effect of compressibility on turbulent reacting mixing layers with moderate heat release. Side- and plan-view visualizations of the reacting mixing layers, which were formed between a high-speed high-temperature vitiated-air stream and a low-speed ambient-temperature hydrogen stream, were obtained using a combined OH/acetone planar laser-induced fluorescence imaging technique. The instantaneous images of OH provide two-dimensional maps of the regions of combustion, and similar images of acetone, which was seeded into the fuel stream, provide maps of the regions of unburned fuel. Two low-compressibility (Mc=0.32, 0.35) reacting mixing layers with differing density ratios and one high-compressibility (Mc=0.70) reacting mixing layer were studied. Higher average acetone signals were measured in the compressible mixing layer than in its low-compressibility counterpart (i.e. same density ratio), indicating a lower entrainment ratio. Additionally, the compressible mixing layer had slightly wider regions of OH and 50% higher OH signals, which was an unexpected result since lowering the entrainment ratio had the opposite effect at low compressibilities. The large-scale structural changes induced by compressibility are believed to be primarily responsible for the difference in the behaviour of the high- and low-compressibility reacting mixing layers. It is proposed that the coexistence of broad regions of OH and high acetone signals is a manifestation of a more biased distribution of mixture compositions in the compressible mixing layer. Other mechanisms through which compressibility can affect the combustion are discussed.


2014 ◽  
Vol 57 (5) ◽  
pp. 963-970 ◽  
Author(s):  
TieJin Wang ◽  
Jun Chen ◽  
XiaoTian Shi ◽  
Ning Hu ◽  
ZhenSu She

1991 ◽  
Vol 227 ◽  
pp. 473-493 ◽  
Author(s):  
S. Sarkar ◽  
G. Erlebacher ◽  
M. Y. Hussaini ◽  
H. O. Kreiss

It is shown that the dilatational terms that need to be modelled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of the compressible velocity field, which generates these dilatational terms, is explored by asymptotic analysis of the compressible Navier-Stokes equations in the case of homogeneous turbulence. The lowest-order equations for the compressible field are solved and explicit expressions for some of the associated one-point moments are obtained. For low Mach numbers, the compressible mode has a fast timescale relative to the incompressible mode. Therefore, it is proposed that, in moderate Mach number homogeneous turbulence, the compressible component of the turbulence is in quasi-equilibrium with respect to the incompressible turbulence. A non-dimensional parameter which characterizes this equilibrium structure of the compressible mode is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.


Sign in / Sign up

Export Citation Format

Share Document