entrainment ratio
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 46)

H-INDEX

13
(FIVE YEARS 2)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Cheng Yang ◽  
Jianliang Jiang ◽  
Bo Qi ◽  
Guoqing Cui ◽  
Liyong Zhang ◽  
...  

A swirling drill bit designed with an integrated vane swirler was developed to improve reverse circulation in down-the-hole hammer drilling. Its entrainment effect and influential factors were investigated by CFD simulation and experimental tests. The numerical results exhibit reasonable agreement with the experimental data, with a maximum error of 13.68%. In addition, the structural parameters of the swirler were shown to have an important effect on the reverse circulation performance of the drill bit, including the helical angle and number of spiral blades, swirler outlet area, and the flushing nozzles. The optimal parameters for the swirling drill bit without flushing nozzles include a helical angle of 60°, four spiral blades, and the area ratio of 2, while it is about 30°, 3, and 3 for the drill bit with flushing nozzles. Moreover, the entrainment ratio of the drill bit without flushing nozzles can be improved by nearly two times compared with one with flushing nozzles under the same conditions.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 88
Author(s):  
Dario Friso

For many years now, manufacturers have been producing supersonic ejectors with a high entrainment ratio for the chemical, oil, and food industries. In the present work, mathematical modelling of the entrainment ratio of such industrial ejectors is carried out, in which a variation of the diffuser efficiency is also assumed to be a function of the Mach number of the motive gas. To determine this unknown relationship, the mathematical modelling was overturned by inserting the entrainment ratios of ten different high-performance industrial ejectors, as identified through an experimental investigation. The mathematical modelling, completed through the use of the relationship between the diffuser efficiency and the Mach number of the motive gas, was applied to sixty-eight ejectors, built and tested experimentally over the last twenty years as part of research aimed at the development of thermal ejector refrigeration systems (ERSs), to obtain the entrainment ratios proposed by the manufacturers (industrial entrainment ratios). A comparison of the experimental entrainment ratios with respect to the industrial ones demonstrated that the former were always lower, ranging from a minimum of −17% to a maximum of −82%. These results indicate that the lab-built ejectors for ERS prototypes can be improved. Therefore, in the future, researchers should apply numerical analysis iteratively, starting from a given geometry of the ejector, and modifying it until the numerical analysis provides the industrial value of the entrainment ratio.


2021 ◽  
Vol 61 (6) ◽  
pp. 768-776
Author(s):  
Andrii Sliusenko ◽  
Vitalii Ponomarenko ◽  
Inna Forostiuk

In the paper, the hydrodynamics of the liquid-gas mixture in the mixing chamber of the ejectors at different spatial positions was analyzed and the comparative study of such ejectors was carried out. It was found that a more ordered mode of movement of the mixture in the mixing chamber is created as a result of the coincidence of the velocity vector of liquid drops and the direction of gravity in the vertical position of the ejectors. This leads to increasing the volume entrainment ratio almost twice. The analysis of the liquid-gas mixture flow in the mixing chamber, evaluation calculations and research allowed to develop and to patent a jet apparatus with a conical-cylindrical (combined) mixing chamber. It was also found that for such ejectors, the volume entrainment ratio is 15–55% higher than for a jet apparatus with a cylindrical mixing chamber due to the reduction of the resistance of the passive flow into the mixing chamber and prevention of the formation of reverse-circulating flows. A study has been conducted on liquid-gas ejectors in the range of the main geometric parameter m (ratio of the mixing chamber area to the nozzle area) 9.4–126.5, which allowed to establish its rational values at which the maximum volume entrainment ratio is achieved (m = 25–40).


2021 ◽  
Vol 2116 (1) ◽  
pp. 012091
Author(s):  
Giorgio Besagni ◽  
Lorenzo Croci ◽  
Nicolò Cristiani ◽  
Fabio Inzoli ◽  
Gaël Raymond Guédon

Abstract It is known that the global performances of ejector-based systems (viz., at the “global-scale”) depend on the local flow properties within the ejector (viz., at the “local-scale”). For this reason, reliable computational fluid-dynamics (CFD) approaches, to obtain a precise and an a-priori knowledge of the local flow phenomena, are of fundamental importance to support the deployment of innovative ejector-based systems. This communication contributes to the existing discussion by presenting a numerical study of the turbulent compressible flow in a supersonic ejector. In particular, this communication focuses on a precise knowledge gap: the comparison between 2D and 3D modelling approaches as well as density-based and pressure-based solvers. The different approaches have been compared and validated against literature data consisting in entrainment ratio and wall static pressure measurements. In conclusion, this paper is intended to provide guidelines for researchers dealing with the numerical simulation of ejectors.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012018
Author(s):  
Yuqiang Dai ◽  
Zhipeng Tang ◽  
Mohan Li ◽  
Gang Hao ◽  
Luwei Zhang ◽  
...  

Abstract Owing to the difficult utilization of the low-pressure level in the process industry, the low-energy-quality steam is often condensed to recover the demineralized water or just discharged directly, causing a huge waste of thermal energy. A novel technology of enhancing the steam’s energy quality by using the wave rotor based on the principle of moving shockwave compression is proposed. The supercharging ability of 3-port wave rotor is studied by meaning of 1-dimension unsteady theory and computational fluid dynamic. A practical thermodynamic flowsheet of boosting the low-pressure steam driven by high-pressure steam is also proposed and analysed in detail. As an example, to boost the saturated steam of pressure 1.0 MPa to 1.953 MPa, a three-stage wave rotor solution is proposed and is verified its feasibility. The high supercharging ratio and entrainment ratio of the wave rotor are much higher than the traditional steam ejector shows the feasibility of enhancing energy-quality of low-pressure steam.


2021 ◽  
Vol 56 (5) ◽  
pp. 294-317
Author(s):  
A. I. Siswantara ◽  
H. Pujowidodo ◽  
M. A. Budiyanto ◽  
G. G. Ramdlan Gunadi ◽  
C. D. Widiawaty

This research aims to find the optimal standard k-e turbulence model constants (cµ, c1e, and c2e) for better predicting compressible fluid dynamics in an air jet ejector. The turbulence field in a jet flow plays an important role in influencing the performance of the momentum transfer process at a shear layer in nozzle application for momentum source and mixing process. In this research, some activities have been done before analyzing and optimizing the turbulence model constants, including preliminary turbulence modeling study for compressible flow in the air-jet ejector, verification, and validation with primary experimental data as well as by other secondary data. The preliminary studies in turbulence modeling presented that the turbulence modeling of a 3mm air jet-ejector resulted in a similar trend of the relation between entrainment ratio and motive fluid pressure. The results showed that the sensitive parameters in the standard k-emodel dissipation and diffusion terms, cµ, c1e, and c2e, strongly affected the optimum value of turbulence kinetic energy (k) and dissipation rate (e), compared to the reference model. Better k and e could be obtained by changing the c2e into positively proportional, but the cµ and c1e must be changed with opposite proportionality. It was found that the optimum standard k-e model constants in the case of air-jet ejector with 3 mm nozzle diameter for cµ, c1e, and c2e are 0.05, 1.48, and 1.88, respectively, with the error values for k being -8.88% and e being -17.44%.


2021 ◽  
Vol 2047 (1) ◽  
pp. 012020
Author(s):  
F T Jia ◽  
D Z Yang ◽  
J Xie

Abstract The employment of two-phase ejectors in the CO2 refrigeration systems is widely developed recently. Due to the lack reports on the two-throat nozzle ejectors, the performance of CO2 two-throat nozzle ejector varied with different second throat diameter (D t ) was numerically investigated under different primary pressures (P p ). The accuracy of established numerical simulation model was confirmed with the assistance of experimental data summarized in the literature. The simulated results show that the two-throat nozzle ejector performance corresponding to entrainment ratio (Er) is of better stability with relatively bigger D t under different working conditions. Next, the axial static pressure corresponding to bigger D t is lower than that of smaller one at pre-mixing chamber. And the secondary flow velocity of bigger D t is accelerated better as compared to that of smaller one.


Author(s):  
Nina F. Yurchenko ◽  
David S. Breed ◽  
Shaowei Zhang

AbstractThe emergency transformation of various aspects of life and business these days requires prompt evaluation of autonomous vehicles. One of the primary reassessments deals with the applicability of the vehicle passive safety system to the protection of arbitrarily positioned passengers. To mitigate possible risks caused by the simultaneous deployment of several big airbags, a new principle of their operation is required. Herein, the aspirated inflator for a driver airbag is developed that can provide 50L-airbag inflation within 30–40 ms. As a result, about 3/4 of the air is to be entrained into an airbag from the vehicle compartment. The process is initiated by a supersonic pulse jet (1/3 air volume) generated pyrotechnically. Then the Prandtl–Meyer problem formulation enables guiding linear and angular dimensions of the essential parts of the device. Accordingly, a family of experimental models of varied geometry is fabricated and tested to determine their operational effectiveness in a range of motive pressure within ~ 3–7 MPa. Experiments are performed on a specially designed facility equipped with compressed-air tanks and a high-speed valve to mimic the inflator operation with the pyrotechnic gas generator. The aspirated inflator operability is characterized using multivariate measurements of pressure fields, high-speed video-recording of the airbag inflation process, and evaluation of aspiration (entrainment) ratio. The average volume aspiration ratio measured at 300 K is found to reach 2.8 and it’s expected to almost double at 1200 K.


2021 ◽  
Author(s):  
Franz X. Forster ◽  
Alexander E. Deravanessian ◽  
Matthew J. Nazarian ◽  
Mariano Rubio ◽  
Kevin R. Anderson

Abstract The use of ejector cycles for increased performance and efficiency is becoming more prevalent in industry. The goal of this study is to evaluate an ejector using Computational Fluid Dynamics (CFD) to evaluate flow patterns, perform trade studies varying the type of refrigerant, and determine the entrainment ratio for each working fluid, over a range of boundary condition pressures, set at points along the ejector’s flow path. The 2012 Toyota Prius V is one of the first automobiles using an ejector cycle in their internal cabin refrigeration system. The DENSO Corporation ejector hardware was used as the basis for the creation of geometry for the CFD mode of the ejector. Three working fluids were simulated, R-134a, R-245fa, and R-1235yf. The primary findings of this study were as follows. The CFD study here indicates that R-245fa performs the best out of the three working fluids, when examining their entrainment ratios (ratio of secondary to primary flow rates in the ejector). For all three working fluids, the entrainment ratio was seen to peak performance at an ejector inlet pressure of 1.75 × 105 Pa. The ejector mixing chamber pressure and ejector outlet pressure boundary conditions also witnessed a rise in entrainment ratios, during an increase of their respective pressure values.


Sign in / Sign up

Export Citation Format

Share Document