scholarly journals Progress on Gust Load Alleviation Wind Tunnel Experiment and Aeroservoelastic Model Validation for a Flexible Wing with Variable Camber Continuous Trailing Edge Flap System

Author(s):  
Nhan T. Nguyen ◽  
Nick B. Cramer ◽  
Kelley E. Hashemi ◽  
Michael C. Drew ◽  
Juntao Xiong ◽  
...  
Author(s):  
Benjamin K. S. Woods ◽  
Norman M. Wereley ◽  
Curt S. Kothera

A novel active trailing edge flap actuation system is under development. This system differs significantly from previous trailing edge flap systems in that it is driven by a pneumatic actuator technology. Pneumatic Artificial Muscles (PAMs) were chosen because of several attractive properties, including high specific work and power output, an expendable operating fluid, and robustness. The actuation system is sized for a full scale active rotor system for a Bell 407 scale helicopter. This system is designed to produce large flap deflections (±20°) at the main rotor rotation frequency (1/rev) to create large amplitude thrust variation for primary control of the helicopter. Additionally, it is designed to produce smaller magnitude deflections at higher frequencies, up to 5/rev (N+1/rev), to provide vibration mitigation capability. The basic configuration has a pair of Pneumatic Artificial Muscles mounted antagonistically in the root of each blade. A bellcrank and linkage system transfers the force and motion of these actuators to a trailing edge flap on the outboard portion of the rotor. A reduced span wind tunnel test model of this system has been built and tested in the Glenn L. Martin Wind Tunnel at the University of Maryland at wind speeds up to M = 0.3. The test article consisted of a 5-ft long tip section of a Bell 407 rotor blade cantilevered from the base of the tunnel with a 34 in, 15% chord plain flap that was driven by the PAM actuation system. Testing over a wide range of aerodynamic conditions and actuation parameters established the considerable control authority and bandwidth of the system at the aerodynamic load levels available in the tunnel. Comparison of quasi-static experimental results shows good agreement with predictions made using a simple system model.


Aerospace ◽  
2019 ◽  
Vol 6 (7) ◽  
pp. 76
Author(s):  
Daniel Ossmann ◽  
Manuel Pusch

Active control techniques are a key factor in today’s aircraft developments to reduce structural loads and thereby enable highly efficient aircraft designs. Likewise, increasing the autonomy of aircraft systems aims to maintain the highest degree of operational performance also in fault scenarios. Motivated by these two aspects, this article describes the design and validation of a fault tolerant gust load alleviation control system on a flexible wing in a wind tunnel. The baseline gust load alleviation controller isolates and damps the weakly damped first wing bending mode. The mode isolation is performed via an H 2 -optimal blending of control inputs and measurement outputs, which allows for the design of a simple single-input single-output controller to actively damp the mode. To handle actuator faults, a control allocation scheme based on quadratic programming is implemented, which distributes the required control energy to the remaining available control surfaces. The control allocation is triggered in fault scenarios by a fault detection scheme developed to monitor the actuators using nullspace based filter design techniques. Finally, the fault tolerant control scheme is verified by wind tunnel experiments.


Sign in / Sign up

Export Citation Format

Share Document