scholarly journals Fault Tolerant Control of an Experimental Flexible Wing

Aerospace ◽  
2019 ◽  
Vol 6 (7) ◽  
pp. 76
Author(s):  
Daniel Ossmann ◽  
Manuel Pusch

Active control techniques are a key factor in today’s aircraft developments to reduce structural loads and thereby enable highly efficient aircraft designs. Likewise, increasing the autonomy of aircraft systems aims to maintain the highest degree of operational performance also in fault scenarios. Motivated by these two aspects, this article describes the design and validation of a fault tolerant gust load alleviation control system on a flexible wing in a wind tunnel. The baseline gust load alleviation controller isolates and damps the weakly damped first wing bending mode. The mode isolation is performed via an H 2 -optimal blending of control inputs and measurement outputs, which allows for the design of a simple single-input single-output controller to actively damp the mode. To handle actuator faults, a control allocation scheme based on quadratic programming is implemented, which distributes the required control energy to the remaining available control surfaces. The control allocation is triggered in fault scenarios by a fault detection scheme developed to monitor the actuators using nullspace based filter design techniques. Finally, the fault tolerant control scheme is verified by wind tunnel experiments.

Automatica ◽  
2020 ◽  
Vol 114 ◽  
pp. 108829 ◽  
Author(s):  
Lejun Chen ◽  
Christopher Edwards ◽  
Halim Alwi ◽  
Masayuki Sato

2017 ◽  
Vol 50 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Jimoh O. Pedro ◽  
Thando B. Tshabalala

2019 ◽  
Vol 124 (1273) ◽  
pp. 385-408
Author(s):  
M. Saied ◽  
B. Lussier ◽  
I. Fantoni ◽  
H. Shraim ◽  
C. Francis

ABSTRACTThis paper considers actuator redundancy management for a redundant multirotor Unmanned Aerial Vehicle (UAV) under actuators failures. Different approaches are proposed: using robust control (passive fault tolerance), and reconfigurable control (active fault tolerance). The robust controller is designed using high-order super-twisting sliding mode techniques, and handles the failures without requiring information from a Fault Detection scheme. The Active Fault-Tolerant Control (AFTC) is achieved through redistributing the control signals among the healthy actuators using reconfigurable multiplexing and pseudo-inverse control allocation. The Fault Detection and Isolation problem is also considered by proposing model-based and model-free modules. The proposed techniques are all implemented on a coaxial octorotor UAV. Different experiments with different scenarios were conducted for the validation of the proposed strategies. Finally, advantages, disadvantages, application considerations and limitations of each method are examined through quantitative and qualitative studies.


Sign in / Sign up

Export Citation Format

Share Document