Fuel Weight Minimization for Large N+3 Composite Transports with Multiple Control Surfaces

Author(s):  
Wei Zhao ◽  
Rikin Gupta ◽  
Rakesh K. Kapania ◽  
David K. Schmidt
2014 ◽  
Vol 51 (1) ◽  
pp. 335-342 ◽  
Author(s):  
Kumar V. Singh ◽  
Laura A. McDonough ◽  
Raymond Kolonay ◽  
Jonathan E. Cooper

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Junzhi Yu ◽  
Kai Wang ◽  
Min Tan ◽  
Jianwei Zhang

This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface.


Author(s):  
Deman Tang ◽  
Aiqin Li ◽  
Earl H. Dowell

In the present paper, a transient response study of the effectiveness of trailing and leading edge control surfaces has been made for a rolling wing-fuselage model. An experimental model and wind tunnel test are used to assess the theoretical results. The theoretical model includes the inherently nonlinear dry friction damping moment that is present between the spindle support and the experimental aeroelastic wing model. The roll trim equation of motion and the appropriate aeroelastic equations are solved for different combinations of leading and trailing edge control surface rotations using a reduced order aerodynamic model based upon the fluid eigenmodes of three dimensional vortex lattice aerodynamic theory. The present paper provides new insights into the transient dynamic behavior and design of an adaptive aeroelastic wing using trailing and leading edge control surfaces.


Sign in / Sign up

Export Citation Format

Share Document