A reduced order model for boundary layer ingestion map prediction at fan inlet of rear-mounted engine nacelle

2021 ◽  
Author(s):  
Davide Cinquegrana ◽  
Pier Luigi Vitagliano
Author(s):  
M. Dellacasagrande ◽  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
P. Zunino

Abstract The present paper discusses the results of a large experimental data set describing transitional boundary layers. Time resolved Particle Image Velocimetry (PIV) measurements have been adopted to survey the boundary layer developing over a flat plate under prescribed adverse pressure gradients typical of turbomachinery components. The tests have been performed while varying the pressure gradient, the Reynolds number and the inlet free-stream turbulence intensity (FSTI). Two exemplary cases, referring to bypass and separated flow transition, are discussed by means of principal axis analysis and proper orthogonal decomposition (POD). The POD is used to provide statistical representation of the flow structures and to compute the turbulence production (i.e., the mean flow energy dissipation) due to the dynamical features observed for the different transition types. Reduced order model representations of the flow field are provided and their contribution to the total turbulence kinetic energy production is isolated. This analysis is closed by the inspection of the eigenvectors of the strain rate and Reynolds stress tensors. For the separated flow case, it is shown that the eigenvectors of strain rate and shear tensor are almost perfectly aligned downstream of the maximum displacement of the bubble. The reduced order model reconstruction of the Kelvin-Helmholtz shed vortices provides the largest part of the overall TKE production. For the high FSTI induced transition, the eigenvectors of the shear and stress tensors do not have the same direction. The loss generation is related to the local maximum Reynolds normal stress in the streamwise direction, induced by the boundary layer streaks and their breakdown.


Transmission Line model are an important role in the electrical power supply. Modeling of such system remains a challenge for simulations are necessary for designing and controlling modern power systems.In order to analyze the numerical approach for a benchmark collection Comprehensive of some needful real-world examples, which can be utilized to evaluate and compare mathematical approaches for model reduction. The approach is based on retaining the dominant modes of the system and truncation comparatively the less significant once.as the reduced order model has been derived from retaining the dominate modes of the large-scale stable system, the reduction preserves the stability. The strong demerit of the many MOR methods is that, the steady state values of the reduced order model does not match with the higher order systems. This drawback has been try to eliminated through the Different MOR method using sssMOR tools. This makes it possible for a new assessment of the error system Offered that the Observability Gramian of the original system has as soon as been thought about, an H∞ and H2 error bound can be calculated with minimal numerical effort for any minimized model attributable to The reduced order model (ROM) of a large-scale dynamical system is essential to effortlessness the study of the system utilizing approximation Algorithms. The response evaluation is considered in terms of response constraints and graphical assessments. the application of Approximation methods is offered for arising ROM of the large-scale LTI systems which consist of benchmark problems. The time response of approximated system, assessed by the proposed method, is also shown which is excellent matching of the response of original system when compared to the response of other existing approaches .


Sign in / Sign up

Export Citation Format

Share Document