flexible manipulators
Recently Published Documents


TOTAL DOCUMENTS

459
(FIVE YEARS 39)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Levent Malgaca ◽  
Şefika İpek Lök

User designed manipulators are widely used in industry as a part of automation. The design of lighter robotic arms is required for less energy consumption. Joints, structural features, and payload affect the dynamic behavior of manipulators. Even if the arms have sufficient structural rigidity, joints, or payloads further increase their flexibility. These factors should be considered at the design stage. Flexibility causes vibrations, and these vibrations negatively affect robot repeatability and processing speed. Reducing the vibration levels of flexible manipulators is an attractive issue for engineers and researchers. Accurate estimation of the mathematical model of flexible manipulators increases the success of vibration control. In this paper, the modeling and experiments for vibration control of a single-axis flexible curved manipulator with payload are considered. The experimental system is introduced to collect vibration responses synchronously at the tip of the curved manipulator for angular velocity input. The mathematical model of the manipulator is estimated using the continuous-time system identification (CTSI) method with a black-box model based on the experimental input/output (I/O) signals. A five-segment S-curve motion input based on the modal parameters is designed to suppress residual vibrations. Vibration control is successfully performed for different deceleration times of the designed S-curve motion input. The results showed that the residual vibrations from experiments and predicted models matched well for different cases depending on payload, angular position, and motion time.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012016
Author(s):  
S S Z Nazri ◽  
M S Hadi ◽  
H M Yatim ◽  
M H Ab Talib ◽  
I Z M Darus

Abstract The application of flexible manipulators has increased in recent years especially in the fourth industrial revolution. It plays a significant role in a diverse range of fields, such as construction automation, environmental applications, space engineering and many more. Due to the lightweight, lower inertia and high flexibility of flexible manipulators, undesired vibration may occur and affect the precision of operation. Therefore, development of an accurate model of the flexible manipulator was presented prior to establishing active vibration control to suppress the vibration and increase efficiency of the system. In this study, flexible manipulator system was modelled using the input and output experimental data of the endpoint acceleration. The model was developed by utilizing intelligence algorithm via ant colony optimization (ACO), commonly known as a population-based trail-following behaviour of real ants based on autoregressive with exogenous (ARX) model structure. The performance of the algorithm was validated based on three robustness methods known as lowest mean square error (MSE), correlation test within 95% confidence level and pole zero stability. The simulation results indicated that ACO accomplished superior performance by achieving lowest MSE of 2.5171×10−7 for endpoint acceleration. In addition, ACO portrayed correlation tests within 95% confidence level and great pole-zero stability.


2021 ◽  
Author(s):  
Jiacheng Wang ◽  
Hongjun Yang ◽  
Jinkun Liu ◽  
Shuquan Wang

2021 ◽  
Vol 09 (06) ◽  
pp. E881-E887
Author(s):  
Benjamin Walter ◽  
Yannick S. Krieger ◽  
Dirk Wilhelm ◽  
Hubertus Feussner ◽  
Tim C. Lueth ◽  
...  

Abstract Background and study aims A major drawback of endoscopic en-bloc resection technique is its inability to perform bimanual tasks. Although endoscopic platforms that enable bimanual tasks are commercially available, they are neither approved for various locations nor adaptable to specific patients and indications. Methods Based on evolution of an adaptive 3D-printable platform concept, system variants with different characteristic properties were evaluated for ESD scenarios, ex-vivo in two locations in the stomach and colorectum. Results In total 28 ESDs were performed (7 antrum, 7 corpus in inversion, 7 cecum, 7 rectum) in a porcine ex-vivo setup. ESD was feasible in 21 cases. Investigated manipulator variants are differently well suited for performing ESD within the varying interventions scenarios. Dual-arm manipulators allowed autonomous ESD, while single-arm flexible manipulators could be used more universally due to their compact design, especially for lesions difficult to access. Pediatric scopes were too frail to guide the overtube-manipulators in extremely angled positions. Working in the rectum was impaired using long-sized manipulator arms. Conclusions The presented endoscopic platform based on 3D-printable and customizable manipulator structures might be a promising approach for future improvement of ESD procedure. With regard to localization, especially flexible manipulators attached to standard endoscopes appear to be most promising for further application of specific and individualised manipulator systems.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 896
Author(s):  
Dongyang Shang ◽  
Xiaopeng Li ◽  
Meng Yin ◽  
Fanjie Li

Gravity and flexibility will cause fluctuations of the rotation angle in the servo system for flexible manipulators. The fluctuation will seriously affect the motion accuracy of end-effectors. Therefore, this paper adopts a control method combining the RBF (Radial Basis Function) neural network and pole placement strategy to suppress the rotation angle fluctuations. The RBF neural network is used to identify uncertain items caused by the manipulator’s flexibility and the time-varying characteristics of dynamic parameters. Besides, the pole placement strategy is used to optimize the PD (Proportional Differential) controller’s parameters to improve the response speed and stability. Firstly, a dynamic model of flexible manipulators considering gravity is established based on the assumed mode method and Lagrange’s principle. Then, the system’s control characteristics are analyzed, and the pole placement strategy optimizes the parameters of the PD controllers. Next, the control method based on the RBF neural network is proposed, and the Lyapunov stability theory demonstrates stability. Finally, numerical analysis and control experiments prove the effectiveness of the control method proposed in this paper. The means and standard deviations of rotation angle error are reduced by the control method. The results show that the control method can effectively reduce the rotation angle error and improve motion accuracy.


Sign in / Sign up

Export Citation Format

Share Document