Mars Entry, Descent, and Landing Spacecraft Design to Trajectory Simulation

2021 ◽  
Author(s):  
Kaustubh Ray
2018 ◽  
pp. 72-78
Author(s):  
A. V. Gorbunov ◽  
Yu. A. Zhukov ◽  
E. V. Korotkov ◽  
A. V. Lekanov ◽  
V. G. Porpylev ◽  
...  

The vast majority of electronic devices on-Board Russian spacecraft is placed on a temperature-controlled mounting surface is ON, however, in some tasks there is a necessity to place a separate electronic units out thermostated panels on remote spacecraft design. The article presents an autonomous system of providing thermal regime of electronic blocks of spacecraft and objects of space technology that require maintaining the operating temperature and are unable to be installed on the thermostatic landing surfaces of spacecraft. The proposed autonomous system of providing thermal regime can operate autonomously in the extended operating temperature range of the installation surface from -80 to +80 °C when the supply voltage changes in the range from 75 to 550% of the nominal value. The review of the existing solutions is presented, the substantiation of the proposed decision is given, the structural scheme of autonomous system of providing thermal regime is given and its description and an example of application is given.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1960
Author(s):  
Azade Fotouhi ◽  
Ming Ding ◽  
Mahbub Hassan

In this paper, we address the application of the flying Drone Base Stations (DBS) in order to improve the network performance. Given the high degrees of freedom of a DBS, it can change its position and adapt its trajectory according to the users movements and the target environment. A two-hop communication model, between an end-user and a macrocell through a DBS, is studied in this work. We propose Q-learning and Deep Q-learning based solutions to optimize the drone’s trajectory. Simulation results show that, by employing our proposed models, the drone can autonomously fly and adapts its mobility according to the users’ movements. Additionally, the Deep Q-learning model outperforms the Q-learning model and can be applied in more complex environments.


2007 ◽  
Vol 02 (01) ◽  
pp. 27-34 ◽  
Author(s):  
Sachit Butail ◽  
Mason Peck
Keyword(s):  

2021 ◽  
Author(s):  
Zhengkang Zuo ◽  
Sana Ullah ◽  
Yiyuan Sun ◽  
Fei Peng ◽  
Kaiwen Jiang

Author(s):  
Alexander Bertino ◽  
Peiman Naseradinmousavi ◽  
Atul Kelkar

Abstract In this paper, we study the analytical and experimental control of a 7-DOF robot manipulator. A model-free decentralized adaptive control strategy is presented for the tracking control of the manipulator. The problem formulation and experimental results demonstrate the computational efficiency and simplicity of the proposed method. The results presented here are one of the first known experiments on a redundant 7-DOF robot. The efficacy of the adaptive decentralized controller is demonstrated experimentally by using the Baxter robot to track a desired trajectory. Simulation and experimental results clearly demonstrate the versatility, tracking performance, and computational efficiency of this method.


Sign in / Sign up

Export Citation Format

Share Document