Compressibility Effects on High-Reynolds Coherent Structures via Two-Point Correlations

2021 ◽  
Author(s):  
Christian J. Lagares ◽  
Guillermo Araya
2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


2019 ◽  
Vol 870 ◽  
pp. 460-491 ◽  
Author(s):  
Jérémy Basley ◽  
Laurent Perret ◽  
Romain Mathis

The influence of a cube-based canopy on coherent structures of the flow was investigated in a high Reynolds number boundary layer (thickness $\unicode[STIX]{x1D6FF}\sim 30\,000$ wall units). Wind tunnel experiments were conducted considering wall configurations that represent three idealised urban terrains. Stereoscopic particle image velocimetry was employed using a large field of view in a streamwise–spanwise plane ($0.55\unicode[STIX]{x1D6FF}\times 0.5\unicode[STIX]{x1D6FF}$) combined to two-point hot-wire measurements. The analysis of the flow within the inertial layer highlights the independence of its characteristics from the wall configuration. The population of coherent structures is in agreement with that of smooth-wall boundary layers, i.e. consisting of large- and very-large-scale motions, sweeps and ejections, as well as smaller-scale vortical structures. The characteristics of vortices appear to be independent of the roughness configuration while their spatial distribution is closely linked to large meandering motions of the boundary layer. The canopy geometry only significantly impacts the wall-normal exchanges within the roughness sublayer. Bi-dimensional spectral analysis demonstrates that wall-normal velocity fluctuations are constrained by the presence of the canopy for the densest investigated configurations. This threshold in plan area density above which large scales from the overlying boundary layer can penetrate the roughness sublayer is consistent with the change of the flow regime reported in the literature and constitutes a major difference with flows over vegetation canopies.


2016 ◽  
Vol 802 ◽  
pp. 634-666 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

In recent years it has been established that vortex–wave interaction theory forms an asymptotic framework to describe high Reynolds number coherent structures in shear flows. Comparisons between the asymptotic approach and finite Reynolds number computations of equilibrium states from the full Navier–Stokes equations have suggested that the asymptotic approach is extremely accurate even at quite low Reynolds numbers. However, unlike the situation with an approach based on solving the full Navier–Stokes equations numerically, the vortex–wave interaction approach has not yet been developed to study the instability of the structures it describes. In this work, a comprehensive study of the different instabilities of vortex–wave interaction states is given and it is shown that there are three different time scales on which instabilities can develop. The most dangerous type is a rapidly growing Rayleigh instability of the streak part of the flow. The least dangerous type is a slow mode operating on the diffusion time scale of the roll–streak part of the flow. The third mode of instability, which we will refer to as the edge mode of instability, occurs on a time scale midway between those of the other two modes. The existence of the latter mode explains why some exact coherent structures can act as edge states between the laminar and turbulent attractors. These stability results are compared to results from Navier–Stokes calculations.


Author(s):  
K. Deguchi ◽  
P. Hall

The applications and implications of two recently addressed asymptotic descriptions of exact coherent structures in shear flows are discussed. The first type of asymptotic framework to be discussed was introduced in a series of papers by Hall & Smith in the 1990s and was referred to as vortex–wave interaction theory (VWI). New results are given here for the canonical VWI problem in an infinite region; the results confirm and extend the results for the infinite problem inferred the recent VWI computation of plane Couette flow. The results given define for the first time exact coherent structures in unbounded flows. The second type of canonical structure described here is that recently found for asymptomatic suction boundary layer and corresponds to freestream coherent structures (FCS), in boundary layer flows. Here, it is shown that the FCS can also occur in flows such as Burgers vortex sheet. It is concluded that both canonical problems can be locally embedded in general shear flows and thus have widespread applicability.


1977 ◽  
Vol 83 (4) ◽  
pp. 673-693 ◽  
Author(s):  
James M. Wallace ◽  
Robert S. Brodkey ◽  
Helmut Eckelmann

It is now well established that coherent structures exist in turbulent shear flows. It should be possible to recognize these in the turbulence signals and to program a computer to extract and ensemble average the corresponding portions of the signals in order to obtain the characteristics of the structures. In this work only the u-signal patterns are recognized, using several simple criteria; simultaneously, however, the v or w signals as well as uv or uw are also processed. It is found that simple signal shapes describe the turbulence structures on the average. The u-signal pattern consists of a gradual deceleration from a local maximum followed by a strong acceleration. This pattern is found in over 65% of the total sample in the region of high Reynolds-stress production. The v signal is found to be approximately 180° out of phase with the u signal. These signal shapes can be easily associated with the coherent structures that have been observed visually. Their details have been enhanced by quadrant truncating. These results are compared with randomly generated signals processed by the same method.


2019 ◽  
Vol 84 (5) ◽  
pp. 854-872
Author(s):  
Ozge Ozcakir ◽  
Philip Hall ◽  
Saleh Tanveer

Abstract In two previous papers, Ozcakir, Tanveer, Hall, & Overman (2016, Travelling waves in pipe flow, J. Fluid Mech., 791, 284–328) and Ozcakir, Hall & Tanveer (2019, Nonlinear exact coherent structures in pipe flow and their instabilities, J. Fluid Mech., 868, 341–368) investigated numerically and asymptotically high Reynolds number exact coherent structures in pipe flow. It was found that, in addition to the structures described by the vortex–wave interaction theory by Hall & Smith (1991, On strongly nonlinear vortex/wave interactions in boundary layer transition. J. Fluid Mech., 227, 641–666), there exists vortical structures localized near the centre of the pipe with a core of size $O(Re^{-1/4})$ convected downstream at a speed that deviates from the pipe centreline speed by $O(Re^{-1/2})$, where $Re$ is the Reynolds number. In the finite Reynolds number calculations by Ozcakir, Tanveer, Hall & Overman (2016, Travelling waves in pipe flow, J. Fluid Mech., 791, 284–328), asymptotic state was referred to as a nonlinear viscous core state (NVC). However the reduced asymptotic equations were not solved and only limited confirmation of the theory was found numerically. Here, in order to conclusively confirm the existence of the NVC state we first describe direct numerical calculations on the asymptotically reduced $Re>>1$ equations for such state states. The results are then compared in detail to the finite $Re$ calculations up-to $Re=10^6$; the latter regime is at much higher values of the Reynolds number than those reported in Ozcakir, Tanveer, Hall & Overman (2016, Travelling waves in pipe flow, J. Fluid Mech., 791, 284–328). The results are found to be in excellent agreement with the finite $Re$ calculations in a region between $Re=10^5$ and $10^6$, thereby confirming that the structure observed by Ozcakir, Tanveer, Hall & Overman (2016, Travelling waves in pipe flow, J. Fluid Mech., 791, 284–328) is indeed a finite Reynolds number realization of an asymptotic NVC state.


Sign in / Sign up

Export Citation Format

Share Document