Implementation of Propulsion System Integration Losses to a Supersonic Military Aircraft Conceptual Design

Author(s):  
Emre Karaselvi ◽  
Rumed Imrak ◽  
Melike Nikbay
2018 ◽  
Vol 90 (7) ◽  
pp. 1128-1135 ◽  
Author(s):  
Raghu Chaitanya Munjulury ◽  
Ingo Staack ◽  
Adrián Sabaté López ◽  
Petter Krus

Purpose This paper aims to present a knowledge-based fuel system, implementation and application, oriented towards its use in aircraft conceptual design. Design/methodology/approach Methodology and software tools oriented to knowledge-based engineering applications (MOKA) is used as a foundation for the implementation and integration of fuel systems. Findings Including fuel systems earlier in the design process creates an opportunity to optimize it and obtain better solutions by allocating suitable locations in an aircraft, thereby reflecting on the centre of gravity of the aircraft. Research limitations/implications All geometries are symbolic, representing a space allocation inside the aircraft for the fuel system. A realistic representation of the real components could be realized in detail design. Practical implications Fuel weight is a significant part of take-off weight and decisive in aircraft sizing and range estimations. The three-dimensional geometry provides a better estimation of the volume that is available to allocate the necessary entities. It also provides fast measures for weight and balance, fuel capacity, relative tank positions and a first estimation of piping length. Originality/value Fuel systems appear early in the design process, as they are involved in several first estimations. By using a knowledge-based engineering approach, several alternatives can be visualized and estimated in the conceptual design process. Furthermore, using the weights and centre of gravity at different angles of pitch and roll of each fuel tank, the aircraft could be optimized for handling qualities by using automatically generated system simulation models.


1991 ◽  
Vol 113 (1) ◽  
pp. 40-50 ◽  
Author(s):  
R. H. Tindell

The impact of computational fluid dynamics (CFD) methods on the development of advanced aerospace vehicles is growing stronger year by year. Design engineers are now becoming familiar with CFD tools and are developing productive methods and techniques for their applications. This paper presents and discusses applications of CFD methods used at Grumman to design and predict the performance of propulsion system elements such as inlets and nozzles. The paper demonstrates techniques for applying various CFD codes and shows several interesting and unique results. A novel application of a supersonic Euler analysis of an inlet approach flow field, to clarify a wind tunnel-to-flight data conflict, is presented. In another example, calculations and measurements of low-speed inlet performance at angle of attack are compared. This is highlighted by employing a simplistic and low-cost computational model. More complex inlet flow phenomena at high angles of attack, calculated using an approach that combines a panel method with a Navier-Stokes (N-S) code, is also reviewed. The inlet fluid mechanics picture is rounded out by describing an N-S calculation and a comparison with test data of an offset diffuser having massively separated flow on one wall. Finally, the propulsion integration picture is completed by a discussion of the results of nozzle-afterbody calculations, using both a complete aircraft simulation in a N-S code, and a more economical calculation using an equivalent body of revolution technique.


2021 ◽  
Vol 14 (2) ◽  
pp. 80
Author(s):  
Anton Varyukhin ◽  
Viktor Zakharchenko ◽  
Mikhail Gordin ◽  
Flyur Ismagilov ◽  
Viacheslav Vavilov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document