Knowledge-based aircraft fuel system integration

2018 ◽  
Vol 90 (7) ◽  
pp. 1128-1135 ◽  
Author(s):  
Raghu Chaitanya Munjulury ◽  
Ingo Staack ◽  
Adrián Sabaté López ◽  
Petter Krus

Purpose This paper aims to present a knowledge-based fuel system, implementation and application, oriented towards its use in aircraft conceptual design. Design/methodology/approach Methodology and software tools oriented to knowledge-based engineering applications (MOKA) is used as a foundation for the implementation and integration of fuel systems. Findings Including fuel systems earlier in the design process creates an opportunity to optimize it and obtain better solutions by allocating suitable locations in an aircraft, thereby reflecting on the centre of gravity of the aircraft. Research limitations/implications All geometries are symbolic, representing a space allocation inside the aircraft for the fuel system. A realistic representation of the real components could be realized in detail design. Practical implications Fuel weight is a significant part of take-off weight and decisive in aircraft sizing and range estimations. The three-dimensional geometry provides a better estimation of the volume that is available to allocate the necessary entities. It also provides fast measures for weight and balance, fuel capacity, relative tank positions and a first estimation of piping length. Originality/value Fuel systems appear early in the design process, as they are involved in several first estimations. By using a knowledge-based engineering approach, several alternatives can be visualized and estimated in the conceptual design process. Furthermore, using the weights and centre of gravity at different angles of pitch and roll of each fuel tank, the aircraft could be optimized for handling qualities by using automatically generated system simulation models.

2013 ◽  
Vol 1 (1) ◽  
pp. 158-178
Author(s):  
Urcun John Tanik

Cyberphysical system design automation utilizing knowledge based engineering techniques with globally networked knowledge bases can tremendously improve the design process for emerging systems. Our goal is to develop a comprehensive architectural framework to improve the design process for cyberphysical systems (CPS) and implement a case study with Axiomatic Design Solutions Inc. to develop next generation toolsets utilizing knowledge-based engineering (KBE) systems adapted to multiple domains in the field of CPS design automation. The Cyberphysical System Design Automation Framework (CPSDAF) will be based on advances in CPS design theory based on current research and knowledge collected from global sources automatically via Semantic Web Services. A case study utilizing STEM students is discussed.


Author(s):  
C. P. Huang ◽  
F. W. Liou ◽  
J. J. Malyamakkil ◽  
W. F. Lu

Abstract This paper presents an advisory conceptual design tool for mechanical transmission systems. Space consideration was taken into account during the design process. A prototype function tree was built in the form of knowledge-based system to transfer a designer’s idea into a set of mechanical components. An advisory expert system was also developed to help a designer in decision making. As an example, a packaging machine is designed using the developed system.


2012 ◽  
Vol 271-272 ◽  
pp. 974-980 ◽  
Author(s):  
Pai Zheng ◽  
Víctor Hugo Torres ◽  
José Ríos ◽  
Gang Zhao

The design process comprises the Conceptual Phase, the Embodiment Phase and the Detail Design Phase in which commercial PLM/CAD systems mainly support the latter ones. This situation causes the discontinuity in the overall design information flow: Customer Needs (CNs) - Functional Requirements (FRs) – Design Parameters (DPs) – Key Characteristics (KCs) – Geometric Parameters (GPs). There is also a lack of knowledge reuse in routine design process, resulting in large cost-waste of the overall design process. Aiming to enhance the continuity of the design information flow and facilitate the knowledge reuse, this paper makes use of a knowledge-based framework to integrate conceptual design tools: Quality Function Deployment (QFD), Axiomatic Design (AD), Failure Mode and Effects Analysis (FMEA) and the MOKA methodology into CATIA v5 system. A knowledge-based application (KBA) on the large aircraft y-bolt component design is presented as a case study to validate the proposed framework. The result shows how this novel integrated framework and KBA system could benefit designers in a practical way.


Author(s):  
John Marra

Competitive pressures are forcing manufacturers of turbine engines to reduce product development times, minimize design iterations, and react rapidly to changing markets and customers. Concurrent Engineering replaces the traditional sequential design process with parallel efforts in multiple disciplines, increasing product quality while reducing leadtime. Knowledge-Based Engineering captures product and process knowledge contained in the “corporate memory” to enhance and accelerate the design process. Linking the two together provides a wide variety of synergistic effects not separately available. In this paper a general description of the process used to create a Knowledge Based Engineering (KBE) System capable of Concurrent Engineering (CE) will be presented, along with selected results. The summary discusses use of the system created to pursue real world design problems.


Author(s):  
Paul Lomangino ◽  
Nanxin Wang

Abstract Pedal packaging is a complex and tedious design process involving trade-offs among many related activities, including driver placement and engine compartment layout. Pedal layout design requires checks of candidate designs against large libraries of standards. Designers of pedal assemblies must carefully follow these regulations and standards, and manually come up with the pedal layout design. Differences in interpretation of the regulations result in inconsistent designs. A knowledge-based design assistant, named PEDAL, has been designed and developed to help automotive package designers overcome these problems. This paper reviews the needs of the pedal package designer in the framework of the abilities of knowledge-based engineering. PEDAL’s prototype implementation and its combined knowledge base of design standards are described.


2016 ◽  
Vol 28 (1) ◽  
pp. 40-61 ◽  
Author(s):  
R.M. Chandima Ratnayake

Purpose – The purpose of this paper is to focus on developing a knowledge-based engineering (KBE) approach to recycle the knowledge accrued in an industrial organization for the mitigation of unwanted events due to human error. The recycling of the accrued knowledge is vital in mitigating the variance present at different levels of engineering applications, evaluations and assessments in assuring systems’ safety. The approach is illustrated in relation to subsea systems’ functional failure risk (FFR) analysis. Design/methodology/approach – A fuzzy expert system (FES)-based approach has been proposed to facilitate FFR assessment and to make knowledge recycling possible via a rule base and membership functions (MFs). The MFs have been developed based on the experts’ knowledge, data, information, and on their insights into the selected subsea system. The rule base has been developed to fulfill requirements and guidelines specified in DNV standard DNV-RP-F116 and NORSOK standard Z-008. Findings – It is possible to use the FES-based KBE approach to make FFR assessments of the equipment installed in a subsea system, focussing on potential functional failures and related consequences. It is possible to integrate the aforementioned approach in an engineering service provider’s existing structured information management system or in the computerized maintenance management system (CMMS) available in an asset owner’s industrial organization. Research limitations/implications – The FES-based KBE approach provides a consistent way to incorporate actual circumstances at the boundary of the input ranges or at the levels of linguistic data and risk categories. It minimizes the variations present in the assessments. Originality/value – The FES-based KBE approach has been demonstrated in relation to the requirements and guidelines specified in DNV standard DNV-RP-F116 and NORSOK standard Z-008. The suggested KBE-based FES that has been utilized for FFR assessment allows the relevant quantitative and qualitative data (or information) related to equipment installed in subsea systems to be employed in a coherent manner with less variability, while improving the quality of inspection and maintenance recommendations.


2015 ◽  
Vol 15 (1) ◽  
pp. 24-41 ◽  
Author(s):  
Sepehr Abrishami ◽  
Jack Goulding ◽  
Farzad Pour Rahimian ◽  
Abdul Ganah

Purpose – The purpose of this paper is to find optimal solutions for conceptual design automation, which can be integrated with Building Information Modelling (BIM) support for construction automation. Problems relating ostensibly to failures in computational support for the conceptual design stage are well-documented in extant literature. These failures are multifarious and significant, with several deficiencies being acknowledged in the Architecture, Engineering, and Construction (AEC) industry. Whilst acknowledging this, extant literature has highlighted the importance of computational design in the AEC industry; and failures in this area include the need to strengthen the congruent links and support mechanisms in order to exploit the opportunities presented by new computational design methods. Given this, it is postulated that the application of generative design could enhance the design experience by assisting designers with the iterative generation of alternatives and parameterisation (change management) processes. Moreover, as BIM applications are increasingly providing comprehensive support for modelling and management, then additional synergies could be examined for further exploitation. Design/methodology/approach – This paper focusses on the potential for developing an interactive BIM environment that purposefully adopts generative design as a method of computational design for the early design stages. This research facilitates the automation of the conceptual architectural design process, using BIM as the central conduit for enhancing the integration of the whole building design process (including design interfaces). This approach is designed to improve designers’ cognition and collaboration during the conceptual architectural design process. Findings – This paper evaluates the existing methods and decision support mechanisms, and it introduces the potential of combining different concepts into a single environment (generative design/BIM). Originality/value – This research is novel, in that it critically appraises virtual generative workspaces using BIM as the central conduit. The outcome and intervention of this research forms a theoretical basis for the development of a “proof of concept” prototype, which actively engages generative design into a single dynamic BIM environment to support the early conceptual design process.


2011 ◽  
Vol 421 ◽  
pp. 693-698
Author(s):  
Ke Wang ◽  
Frank Gao ◽  
Jia Peng ◽  
Jie Wang

This document proposes a method of conceptual design of electromechanical products based on KBE(knowledge-based engineering), in order to improve the efficiency of the conceptual design about electromechanical products and avoid the repetitive work of the traditional design, then establishes a system model for that. it completes the conceptual design of products through data mining, rule-based reasoning and other key technologies. A case of reducer design shows that the method is feasible and practical for the conceptual design of electromechanical products.


Sign in / Sign up

Export Citation Format

Share Document