Level Set Modeling of Three-Dimensional Supersonic Liquid Breakup Using the Method of Characteristics

Author(s):  
AbdullahAlMut Sharfuddin ◽  
Foluso Ladeinde
2017 ◽  
Vol 9 (1) ◽  
pp. 143
Author(s):  
Yirang Yuan ◽  
Luo Chang ◽  
Changfeng Li ◽  
Tongjun Sun

A parallel algorithm is presented to solve three-dimensional slightly compressible seepage displacement where domain decomposition and characteristics-mixed finite element are combined. Decomposing the computational domain into several subdomains, we define a special function to approximate the derivative at interior boundary explicitly and obtain numerical solutions of the saturation implicitly on subdomains in parallel. The method of characteristics can confirm strong stability at the fronts, and can avoid numerical dispersion and nonphysical oscillation. It can adopt large-time step but can obtain small time truncation error. So a characteristic domain decomposition finite element scheme is put forward to compute the saturation. The flow equation is computed by the method of mixed finite element and numerical accuracy of Darcy velocity is improved one order. For a model problem we apply some techniques such as variation form, domain decomposition, the method of characteristics, the principle of energy, negative norm estimates, induction hypothesis, and the theory of priori estimates of differential equations to derive optimal error estimate in $l^2$ norm. Numerical example is given to testify theoretical analysis and numerical data show that this method is effective in solving actual applications. Then it can solve the well-known problem.


1956 ◽  
Vol 1 (4) ◽  
pp. 409-423 ◽  
Author(s):  
Maurice Holt

The method of characteristics for steady supersonic flow problems in three dimensions, due to Coburn & Dolph (1949), is extended so that flow with shocks and entropy changes may be treated. Equations of motion based on Coburn & Dolph's characteristic coordinate system are derived and a scheme is described for solving these by finite differences.A linearized method of characteristics is developed for calculating perturbations of a given three-dimensional field of flow. This is a generalization of the method evolved by Ferri (1952) for perturbations of plane flow and conical flow.


Sign in / Sign up

Export Citation Format

Share Document