A Nonlinear Viscoelastic-Viscoplastic Constitutive Model for Epoxy Polymers

2022 ◽  
Author(s):  
Liang Zhang ◽  
Wolfgang J. Klimm ◽  
Kawai Kwok ◽  
Wenbin Yu
Soft Matter ◽  
2021 ◽  
Vol 17 (15) ◽  
pp. 4161-4169
Author(s):  
Sairam Pamulaparthi Venkata ◽  
Kunpeng Cui ◽  
Jingyi Guo ◽  
Alan T. Zehnder ◽  
Jian Ping Gong ◽  
...  

A finite strain nonlinear viscoelastic constitutive model is used to study the uniaxial tension behaviour of a chemical polyampholyte (PA) gel.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Chao Yu ◽  
Guozheng Kang ◽  
Fucong Lu ◽  
Yilin Zhu ◽  
Kaijuan Chen

A series of uniaxial tests (including multilevel loading–unloading recovery, creep-recovery, and cyclic tension–compression/tension ones) were performed to investigate the monotonic and cyclic viscoelastic–viscoplastic deformations of polycarbonate (PC) polymer at room temperature. The results show that the PC exhibits strong nonlinearity and rate-dependence, and obvious ratchetting occurs during the stress-controlled cyclic tension–compression/tension tests with nonzero mean stress, which comes from both the viscoelasticity and viscoplasticity of the PC. Based on the experimental observation, a nonlinear viscoelastic–viscoplastic cyclic constitutive model is then constructed. The viscoelastic part of the proposed model is constructed by extending the Schapery's nonlinear viscoelastic model, and the viscoplastic one is established by adopting the Ohno–Abdel-Karim's nonlinear kinematic hardening rule to describe the accumulation of irrecoverable viscoplastic strain produced during cyclic loading. Furthermore, the dependence of elastic compliance of the PC on the accumulated viscoplastic strain is considered. Finally, the capability of the proposed model is verified by comparing the predicted results with the corresponding experimental ones of the PC. It is shown that the proposed model provides reasonable predictions to the various deformation characteristics of the PC presented in the multilevel loading–unloading recovery, creep-recovery, and cyclic tension–compression/tension tests.


2013 ◽  
Vol 750-752 ◽  
pp. 2196-2199
Author(s):  
Zhi Xu Gu ◽  
Jian Zheng ◽  
Wei Peng ◽  
Xi Nan Tang ◽  
Jun Hui Yin

This paper studies the damage process induced by dewetting microcracks in composite solid propellant. A nonlinear viscoelastic constitutive model for composite soild propellant is presented. The damage variable D is derived from the microcrack system and is function of microcrack size density. The damage evolution equation is determinded by the extending of microcrack. Form the proposed model of microrack evolution process, an explicit form of damage evolution equation which is a function of stress field is given. The cracking event N and the new crack surface area damage ΔA formed by microcrack extension are defined. Material constants are determinded by acoustic emission tests. The rationality of our model has been confirmed by tension tests.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 23 ◽  
Author(s):  
Alexander Kurz ◽  
Jörg Bauer ◽  
Manfred Wagner

The droplet formation of Newtonian fluids and suspensions modified by spherical, non-colloidal particles has attracted much interest in practical and theoretical research. For the present study, a jetting technique was used which accelerates a geometrically defined plunger by a piezoelectric actuator. Changing rheological properties of materials and extending deformation rates towards nonlinear viscoelastic regimes created the requirement to extend dosage impulses towards larger magnitudes. To mimic the rheological characteristics of nonconductive adhesives we modified Newtonian epoxy resins by thixotropic additives and micro-scale glass spheres. Rheological analysis at steady shear and oscillatory shear ensured a differentiation between material and process-related factors. Evaluation of high-speed images allowed the investigation of drop dynamics and highlighted the dispense impulse reduction by material-specific dampening properties.


2018 ◽  
Vol 2018.31 (0) ◽  
pp. 018
Author(s):  
Naruto MAEDA ◽  
Masaki FUJIKAWA ◽  
Junichiro YAMABE ◽  
Masataka KOISHI

Sign in / Sign up

Export Citation Format

Share Document