Incorporating High-Fidelity Aerostructural Analyses in Wind Turbine Rotor Optimization

2022 ◽  
Author(s):  
Denis-Gabriel Caprace ◽  
Adam Cardoza ◽  
Andrew Ning ◽  
Marco Mangano ◽  
Sicheng He ◽  
...  
Author(s):  
Reza Yaghmaie ◽  
Onur Bilgen

Abstract This paper presents a comparison of low- and high-fidelity structural analyses of a 10 MW offshore floating wind turbine rotor blade. For low-fidelity analysis, BeamDyn as a part of the OpenFAST toolset is used. For high-fidelity analysis, the Toolkit for the Analysis of Composite Structures (TACS) finite element method is used. First, several numerical examples with reference solutions from the literature are investigated to compare the accuracy and efficiency of the low- and high-fidelity structural models. Next, the DTU 10 MW reference wind turbine blade is analyzed using both the low- and high-fidelity methods. The bending response of the blade is analyzed. The results show that the high-fidelity model agrees with low-fidelity results and reference solutions. The high-fidelity model represents the deformations more accurately than the low-fidelity model and therefore is appropriate for structural analysis of complex wind turbine blade shapes.


2014 ◽  
Vol 39 ◽  
pp. 874-882 ◽  
Author(s):  
B. Rašuo ◽  
M. Dinulović ◽  
A. Veg ◽  
A. Grbović ◽  
A. Bengin

2022 ◽  
pp. 0309524X2110693
Author(s):  
Alejandra S Escalera Mendoza ◽  
Shulong Yao ◽  
Mayank Chetan ◽  
Daniel Todd Griffith

Extreme-size wind turbines face logistical challenges due to their sheer size. A solution, segmentation, is examined for an extreme-scale 50 MW wind turbine with 250 m blades using a systematic approach. Segmentation poses challenges regarding minimizing joint mass, transferring loads between segments and logistics. We investigate the feasibility of segmenting a 250 m blade by developing design methods and analyzing the impact of segmentation on the blade mass and blade frequencies. This investigation considers various variables such as joint types (bolted and bonded), adhesive materials, joint locations, number of joints and taper ratios (ply dropping). Segmentation increases blade mass by 4.1%–62% with bolted joints and by 0.4%–3.6% with bonded joints for taper ratios up to 1:10. Cases with large mass growth significantly reduce blade frequencies potentially challenging the control design. We show that segmentation of an extreme-scale blade is possible but mass reduction is necessary to improve its feasibility.


Sign in / Sign up

Export Citation Format

Share Document