scholarly journals An Initial Study of Multimodality in Wind Farm Layout Optimization Problems

2022 ◽  
Author(s):  
Benjamin Allen ◽  
Lewis Cameron ◽  
Thomas R. Wainwright ◽  
Daniel J. Poole
Author(s):  
Ning Quan ◽  
Harrison Kim

This paper uses the method developed by Billionnet et al. (1999) to obtain tight upper bounds on the optimal values of mixed integer linear programming (MILP) formulations in grid-based wind farm layout optimization. The MILP formulations in grid-based wind farm layout optimization can be seen as linearized versions of the 0-1 quadratic knapsack problem (QKP) in combinatorial optimization. The QKP is NP-hard, which means the MILP formulations remain difficult problems to solve, especially for large problems with grid sizes of more than 500 points. The upper bound method proposed by Billionnet et al. is particularly well-suited for grid-based wind farm layout optimization problems, and was able to provide tight optimality gaps for a range of numerical experiments with up to 1296 grid points. The results of the numerical experiments also suggest that the greedy algorithm is a promising solution method for large MILP formulations in grid-based layout optimization that cannot be solved using standard branch and bound solvers.


Author(s):  
Puyi Yang ◽  
Hamidreza Najafi

Abstract The accuracy of analytical wake models applied in wind farm layout optimization (WFLO) problems plays a vital role in the present era that the high-fidelity methods such as LES and RANS are still not able to handle an optimization problem for large wind farms. Based on a verity of analytical wake models developed in the past decades, FLOw Redirection and Induction in Steady State (FLORIS) has been published as a tool integrated several widely used wake models and the expansions for them. This paper compares four wake models selected from FLORIS by applying three classical WFLO scenarios. The results illustrate that the Jensen wake model is the fastest one but the defect of underestimation of velocity deficit is obvious. The Multi Zone model needs to be applied additional tunning on the parameters inside the model to fit specific wind turbines. The Gaussian-Curl wake model as an advanced expansion of the Gaussian wake model does not perform an observable improvement in the current study that the yaw control is not included. The default Gaussian wake model is recommended to be used in the WFLO projects which implemented under the FLROIS framework and has similar wind conditions with the present work.


Author(s):  
Ning Quan ◽  
Harrison Kim

The power maximizing grid-based wind farm layout optimization problem seeks to determine the layout of a given number of turbines from a grid of possible locations such that wind farm power output is maximized. The problem in general is a nonlinear discrete optimization problem which cannot be solved to optimality, so heuristics must be used. This article proposes a new two stage heuristic that first finds a layout that minimizes the maximum pairwise power loss between any pair of turbines. The initial layout is then changed one turbine at a time to decrease sum of pairwise power losses. The proposed heuristic is compared to the greedy algorithm using real world data collected from a site in Iowa. The results suggest that the proposed heuristic produces layouts with slightly higher power output, but are less robust to changes in the dominant wind direction.


Sign in / Sign up

Export Citation Format

Share Document