binary differential evolution
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 30)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Muhammad Tariq Sadiq ◽  
Hesam Akbari ◽  
Ateeq Ur Rehman ◽  
Zuhaib Nishtar ◽  
Bilal Masood ◽  
...  

For drug resistance patients, removal of a portion of the brain as a cause of epileptic seizures is a surgical remedy. However, before surgery, the detailed analysis of the epilepsy localization area is an essential and logical step. The Electroencephalogram (EEG) signals from these areas are distinct and are referred to as focal, while the EEG signals from other normal areas are known as nonfocal. The visual inspection of multiple channels for detecting the focal EEG signal is time-consuming and prone to human error. To address this challenge, we propose a novel method based on differential operator and Tunable Q-factor wavelet transform (TQWT) to distinguish the focal and nonfocal signals. For this purpose, first, the EEG signal was differenced and then decomposed by TQWT. Second, several entropy-based features were derived from the TQWT subbands. Third, the efficacy of the six binary feature selection algorithms, binary bat algorithm (BBA), binary differential evolution (BDE) algorithm, firefly algorithm (FA), genetic algorithm (GA), grey wolf optimization (GWO), and particle swarm optimization (PSO), was evaluated. In the end, the selected features were fed to several machine learning and neural network classifiers. We observed that the PSO with neural networks provides an effective solution for the application of focal EEG signal detection. The proposed framework resulted in an average classification accuracy of 97.68%, a sensitivity of 97.26%, and a specificity of 98.11% in a tenfold cross-validation strategy, which is higher than the state of the art used in the public Bern-Barcelona EEG database.


2021 ◽  
pp. 1-13
Author(s):  
Nadir O. Hamed ◽  
Ahmed H. Samak ◽  
Mostafa A. Ahmad

The evolution of technology has brought new challenges and opportunities for the different dimensions of feature space. The higher dimension of the feature space is one of the most critical issues in e-mail classification problems due to accuracy considerations. The problem of finding the subset features that significantly influence the performance of e-mail spam classification has become one of the important challenges. This paper proposes to overcome such a problem, an intelligent approach to Binary Differential Evolution Support Vector Machine (BDE-SVM). The proposed approach enhances the Binary Differential Evolution (BDE) algorithm based on the correlation coefficient as a fitness function to select the significant subset feature evaluated by an SVM classifier. To our best of knowledge, the correlation coefficient as the fitness function has not been used in the differential evolution algorithm before. The selected subset feature is used to assess the most features that contribute to the reliability of the email spam classification. The finding of the enhanced BDE is to present a powerful accuracy. The tests were conducted using “Spambase” and “SpamAssassin.” Identified benchmark datasets are to assess the feasibility of the proposed solution. The result with full-feature accuracy was 93.55 percent compared to the proposed BDE-SVM approach, which is 93.99 percent. Empirical findings also show that our method is capable of effectively increasing the number of features required to enhance the reliability of the email spam classification.


Sign in / Sign up

Export Citation Format

Share Document