Analysis of Rotor Blade Aeroelastic Deformation Utilizing the Uncoupled Static Aeroelastic Analysis Method

2022 ◽  
Author(s):  
Francis R. Phillips ◽  
Trent D. White ◽  
Allen Davis ◽  
Darren J. Hartl
AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 843-850
Author(s):  
Seong M. Jeon ◽  
In Lee

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sen Mao ◽  
Changchuan Xie ◽  
Lan Yang ◽  
Chao Yang

A morphing trailing-edge (TE) wing is an important morphing mode in aircraft design. In order to explore the static aeroelastic characteristics of a morphing TE wing, an efficient and feasible method for static aeroelastic analysis has been developed in this paper. A geometrically exact vortex lattice method (VLM) is applied to calculate the aerodynamic forces. Firstly, a typical model of a morphing TE wing is chosen and built which has an active morphing trailing edge driven by a piezoelectric patch. Then, the paper carries out the static aeroelastic analysis of the morphing TE wing and corresponding simulations were carried out. Finally, the analysis results are compared with those of a traditional wing with a rigid trailing edge using the traditional linearized VLM. The results indicate that the geometrically exact VLM can better describe the aerodynamic nonlinearity of a morphing TE wing in consideration of geometrical deformation in aeroelastic analysis. Moreover, out of consideration of the angle of attack, the deflection angle of the trailing edge, among others, the wing system does not show divergence but bifurcation. Consequently, the aeroelastic analysis method proposed in this paper is more applicable to the analysis and design of a morphing TE wing.


2018 ◽  
Vol 90 (6) ◽  
pp. 937-945 ◽  
Author(s):  
Saijal Kizhakke Kodakkattu ◽  
Prabhakaran Nair ◽  
Joy M.L.

Purpose The purpose of this study is to obtain optimum locations, peak deflection and chord of the twin trailing-edge flaps and optimum torsional stiffness of the helicopter rotor blade to minimize the vibration in the rotor hub with minimum requirement of flap control power. Design/methodology/approach Kriging metamodel with three-level five variable orthogonal array-based data points is used to decouple the optimization problem and actual aeroelastic analysis. Findings Some very good design solutions are obtained using this model. The best design point in minimizing vibration gives about 81 per cent reduction in the hub vibration with a penalization of increased flap power requirement, at normal cruise speed of rotor-craft flight. Practical implications One of the major challenges in the helicopters is the high vibration level in comparison with fixed wing aircraft. The reduction in vibration level in the helicopter improves passenger and crew comfort and reduces maintenance cost. Originality/value This paper presents design optimization of the helicopter rotor blade combining five design variables, such as the locations of twin trailing-edge flaps, peak deflection and flap chord and torsional stiffness of the rotor. Also, this study uses kriging metamodel to decouple the complex aeroelastic analysis and optimization problem.


Author(s):  
Li MA ◽  
Qijun ZHAO ◽  
Kai ZHANG ◽  
Xiayang ZHANG ◽  
Mengmeng ZHAO

2009 ◽  
Vol 46 (6) ◽  
pp. 2164-2169
Author(s):  
Seung-Jun Lee ◽  
Dong-Kyun Im ◽  
Myung-Koo Kang ◽  
In Lee ◽  
Jang-Hyuk Kwon

1973 ◽  
Author(s):  
Raymond G. Carlson ◽  
Sebastian J. Cassarino

Sign in / Sign up

Export Citation Format

Share Document