Modeling Unsteady Surface Pressure Auto-Spectra for Turbulent Boundary Layer Flow over Small Dense Roughness

2022 ◽  
Author(s):  
Matthew R. Catlett ◽  
Benjamin S. Bryan ◽  
Natasha Chang ◽  
Hugh Hemingway ◽  
Jason M. Anderson
2020 ◽  
Vol 32 (12) ◽  
pp. 122111
Author(s):  
Hongyuan Li ◽  
SongSong Ji ◽  
Xiangkui Tan ◽  
Zexiang Li ◽  
Yaolei Xiang ◽  
...  

2000 ◽  
Author(s):  
Mark E. Kithcart ◽  
David E. Klett

Abstract Turbulent boundary layer flow over a flat surface with a single dimple has been investigated numerically using the FLUENT CFD software package, and compared to an experiment by Ezerskii and Shekhov [1989], which studied the same configuration. The impetus for this work developed as a result of previous studies. Kithcart and Klett [1996], and Afanas’yev and Chudnovskiy [1992], showed that dimpled surfaces enhance heat transfer comparably to surfaces with protrusion roughness elements, but with a much lower drag penalty. However, the actual physical mechanisms involved in this phenomena were only partially known prior this study. Results obtained numerically are in good agreement with the experiment, most notably the confirmation of the existence of a region of enhanced heat transfer created by interaction of the flow with the dimple. In particular, the simulation indicates that heat transfer augmentation is a consequence of the development of a stagnation flow region within the dimple geometry, and the existence of coherent vortical structures which create a periodic flow-field within and immediately downstream of the dimple. This periodicity appears to govern the magnitude of the heat transfer augmentation.


Sign in / Sign up

Export Citation Format

Share Document