hemispherical dome
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 16 (59) ◽  
pp. 265-310
Author(s):  
Siwen Cao ◽  
Andras A. Sipos

Crack formation in hemispherical domes is a distinguished problem in structural mechanics. The safety of cracked domes has a long track record; the evolution of the cracking pattern received less attention. Here, we report displacement-controlled loading tests of brittle hemispherical dome specimens, including the evolution of the meridional cracking pattern. The 27 investigated specimens, 20 cm in diameter, were prepared in 3D printed molds, and their material is one of the three mixtures of gypsum and cement. We find that neither the (limited) tensile strength nor the exact value of the thickness significantly affects the statistical description of the cracking pattern, i.e., the cracking phenomenon is robust. The maximal number of the meridional cracks never exceeds seven before the fragments’ disintegration (collapse). We find that the size distribution of the fragments exhibits a lognormal distribution. The evolution is reflected in the load-displacement diagrams recorded in the test, too, as significant drops in the force are accompanied by an emergence of one or more new cracks, reflecting the brittle nature of the phenomenon. A simple, stochastic fragmentation model, in which a segment is fragmented at either in the middle or at the fourth point, fairly recovers the observed size distribution.


Smart Science ◽  
2021 ◽  
pp. 1-10
Author(s):  
Mohammed. Abd Al -Amir Khadim ◽  
Wisam A. Abd Al-Wahid ◽  
Dhafer M. Hachim ◽  
Kamaruzzaman Sopian

2021 ◽  
Vol 28 (1) ◽  
pp. 158-168
Author(s):  
Melanie Nentwich ◽  
Tina Weigel ◽  
Carsten Richter ◽  
Hartmut Stöcker ◽  
Erik Mehner ◽  
...  

Many scientific questions require X-ray experiments conducted at varying temperatures, sometimes combined with the application of electric fields. Here, a customized sample chamber developed for beamlines P23 and P24 of PETRA III at DESY to suit these demands is presented. The chamber body consists mainly of standard vacuum parts housing the heater/cooler assembly supplying a temperature range of 100 K to 1250 K and an xyz manipulator holding an electric contact needle for electric measurements at both high voltage and low current. The chamber is closed by an exchangeable hemispherical dome offering all degrees of freedom for single-crystal experiments within one hemisphere of solid angle. The currently available dome materials (PC, PS, PEEK polymers) differ in their absorption and scattering characteristics, with PEEK providing the best overall performance. The article further describes heating and cooling capabilities, electric characteristics, and plans for future upgrades of the chamber. Examples of applications are discussed.


2020 ◽  
Vol 62 (3) ◽  
pp. 107-123
Author(s):  
Yasmine Abdalla ◽  
Monica Wasfy ◽  
Samar Elmeadawy ◽  
Nada Abdelhadi ◽  
Hany F. Hammad
Keyword(s):  

2019 ◽  
Vol 9 (13) ◽  
pp. 2757
Author(s):  
Hassan Qandil ◽  
Shuping Wang ◽  
Weihuan Zhao

The significance of this work lies in the development of a novel code-based, detailed, and deterministic geometrical approach that couples the optimization of the Fresnel lens primary optical element (POE) and the dome-shaped secondary optical element (SOE). The objective was to maximize the concentration acceptance product (CAP), while using the minimum SOE and receiver geometry at a given f-number and incidence angle (also referred to as the tracking error angle). The laws of polychromatic light refraction along with trigonometry and spherical geometry were utilized to optimize the POE grooves, SOE radius, receiver size, and SOE–receiver spacing. Two literature case studies were analyzed to verify this work’s optimization, both with a spot Fresnel lens POE and a spherical dome SOE. Case 1 had a 625 cm2 POE at an f-number of 1.5, and Case 2 had a 314.2 cm2 POE at an f-number of 1.34. The equivalent POE designed by this work, with optimized SOE radiuses of 13.6 and 11.4 mm, respectively, enhanced the CAP value of Case 1 by 52% to 0.426 and that of Case 2 by 32.4% to 0.45. The SOE’s analytical optimization of Case 1 was checked by a simulated comparative analysis to ensure the validity of the results. Fine-tuning this design for thermal applications and concentrated photovoltaics is also discussed in this paper. The algorithm can be further improved for more optimization parameters and other SOE shapes.


Sign in / Sign up

Export Citation Format

Share Document