scholarly journals Investigating the In Vitro Oxidative Folding Pathways of Bovine Pancreatic Trypsin Inhibitor (BPTI)

2013 ◽  
Author(s):  
Yingsong Wang
2011 ◽  
Vol 392 (10) ◽  
pp. 849-858 ◽  
Author(s):  
Michaela M. Haimann ◽  
Yasar Akdogan ◽  
Reinhard Philipp ◽  
Raghavan Varadarajan ◽  
Dariush Hinderberger ◽  
...  

Abstract SecB is a homotetrameric cytosolic chaperone that forms part of the protein translocation machinery in E. coli. Due to SecB, nascent polypeptides are maintained in an unfolded translocation-competent state devoid of tertiary structure and thus are guided to the translocon. In vitro SecB rapidly binds to a variety of ligands in a non-native state. We have previously investigated the bound state conformation of the model substrate bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin labeling and pyrene fluorescence methods. It was shown that SecB undergoes a conformational change during the process of substrate binding. Here, we generated SecB mutants containing but a single cysteine per subunit or an exposed highly reactive new cysteine after removal of the nearby intrinsic cysteines. Quantitative spin labeling was achieved with the methanethiosulfonate spin label (MTS) at positions C97 or E90C, respectively. Highfield (W-band) electron paramagnetic resonance (EPR) measurements revealed that with BPTI present the spin labels are exposed to a more polar/hydrophilic environment. Nanoscale distance measurements with double electron-electron resonance (DEER) were in excellent agreement with distances obtained by molecular modeling. Binding of BPTI also led to a slight change in distances between labels at C97 but not at E90C. While the shorter distance in the tetramer increased, the larger diagonal distance decreased. These findings can be explained by a widening of the tetrameric structure upon substrate binding much like the opening of two pairs of scissors.


Protein folding pathways that involve disulphide bond formation can be determined in great detail. Those of bovine pancreatic trypsin inhibitor, α-lactalbumin and ribonucleases A and T 1 are compared and contrasted. In each species, whatever conformation favours one disulphide bond over another is stabilized to the same extent by the presence of that disulphide bond in the disulphide intermediates. The pathways differ markedly in the nature of that conformation: in bovine pancreatic trypsin inhibitor a crucial intermediate is partly folded, in α-lactalbumin the intermediates tend to adopt to varying extents the molten globule conformation, while in the ribonucleases the early disulphide intermediates are largely unfolded, and none predominate. In each case, however, the slowest step is formation of a disulphide bond that will be buried in a stable folded conformation; the most rapid step is formation of an accessible disulphide bond on the surface of a folded conformation. Quasi-native species with the native conformation, but incomplete disulphide bonds, can either increase or decrease the rate of further disulphide formation.


Sign in / Sign up

Export Citation Format

Share Document