scholarly journals Syngas production plus reducing carbon dioxide emission using dry reforming of methane: utilizing low-cost Ni-based catalysts

Author(s):  
Saeid Abbasi ◽  
Mohsen Abbasi ◽  
Firouz Tabkhi ◽  
Benyamin Akhlaghi

Applicability of using Dry Reforming of Methane (DRM) using low-cost Ni-based catalysts instead of Conventional Steam Reformers (CSR) to producing syngas simultaneously with reducing the emission of carbon dioxide was studied. In order to achieving this goal, a multi-tubular recuperative thermally coupled reactor which consists of two-concentric-tubes has been designed (Thermally Coupled Tri- and Dry Reformer [TCTDR]). By employing parameters of an industrial scale CSR, two proposed configuration (DRM with fired-furnace and Tri-Reforming of Methane (TRM) instead of fired-furnace (TCTDR)) was simulated. A mathematical heterogeneous model was used to simulate proposed reactors and analyses were carried out based on methane conversion, hydrogen yield and molar flow rate of syngas for each reactor. The results displayed methane conversion of DRM with fired-furnace was 35.29% and 31.44% for Ni–K/CeO2–Al2O3 and Ni/La2O3 catalysts, respectively, in comparison to 26.5% in CSR. Methane conversion in TCTDR reached to 16.98% by Ni/La2O3 catalyst and 88.05% by NiO–Mg/Ce–ZrO2/Al2O3 catalyst in TRM side. Also, it was 15.88% using Ni–K/CeO2–Al2O3 catalyst in the DRM side and 88.36% using NiO–Mg/Ce–ZrO2/Al2O3 catalyst in TRM side of TCTDR. Finally, the effect of different amounts of supplying energy on the performance of DRM with fired-furnace was studied, and positive results in reducing the energy consumption were observed.

Author(s):  
Norazimah Harun ◽  
Jolius Gimbun ◽  
Mohammad Tazli Azizan ◽  
Sumaiya Zainal Abidin

<p>The carbon dioxide (CO<sub>2</sub>) dry reforming of glycerol for syngas production is one of the promising ways to benefit the oversupply crisis of glycerol worldwide. It is an attractive process as it converts carbon dioxide, a greenhouse gas into a synthesis gas and simultaneously removed from the carbon biosphere cycle. In this study, the glycerol dry reforming was carried out using Silver (Ag) promoted Nickel (Ni) based catalysts supported on silicon oxide (SiO<sub>2</sub>) i.e. Ag-Ni/SiO<sub>2</sub>. The catalysts were prepared through wet impregnation method and characterized by using Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Thermo Gravimetric (TGA) analysis. The experiment was conducted in a tubular reactor which condition fixed at 973 K and CO<sub>2</sub>:glycerol molar ratio of 1, under atmospheric pressure. It was found that the main gaseous products are H₂, CO and CH<sub>4</sub> with H₂:CO molar ratio &lt; 1.0. From the reaction study, Ag(5)-Ni/SiO<sub>2</sub> results in highest glycerol conversion and hydrogen yield, accounted for 32.6% and 27.4%, respectively. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 22<sup>nd</sup> January 2016; Revised: 22<sup>nd</sup> February 2016; Accepted: 23<sup>rd</sup> February 2016</em></p><strong>How to Cite</strong>: Harun, N., Gimbun, J., Azizan, M.T., Abidin S.Z. (2016). Characterization of Ag-promoted Ni/SiO<sub>2</sub> Catalysts for Syngas Production via Carbon Dioxide (CO<sub>2</sub>) Dry Reforming of Glycerol. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (2): 220-229 (doi:10.9767/bcrec.11.2.553.220-229)<p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.553.220-229</p>


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 540 ◽  
Author(s):  
Izabela Wysocka ◽  
Jan Hupka ◽  
Andrzej Rogala

Dry reforming of methane (DRM) is an eco-friendly method of syngas production due to the utilization of two main greenhouse gases—methane and carbon dioxide. An industrial application of methane dry reforming requires the use of a catalyst with high activity, stability over a long time, and the ability to catalyze a reaction, leading to the needed a hydrogen/carbon monoxide ratio. Thus, the aim of the study was to investigate the effect of support and noble metal particles on catalytic activity, stability, and selectivity in the dry reforming process. Ni and Ni–Ru based catalysts were prepared via impregnation and precipitation methods on SiO2, ZrO2, Al2O3, and MgAl2O4 supports. The obtained catalysts were characterized using X-ray diffractometry (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), Brunauer–Emmett–Teller (BET) specific surface area, and elemental carbon-hydrogen-nitrogen-sulphur analysis (CHNS) techniques. The catalytic activity was investigated in the carbon dioxide reforming of a methane process at 800 °C. Catalysts supported on commercial Al2O3 and spinel MgAl2O4 exhibited the highest activity and stability under DRM conditions. The obtained results clearly indicate that differences in catalytic activity result from the dispersion, size of an active metal (AM), and interactions of the AM with the support. It was also found that the addition of ruthenium particles enhanced the methane conversion and shifted the H2/CO ratio to lower values.


2018 ◽  
Vol 43 (36) ◽  
pp. 17142-17155 ◽  
Author(s):  
Farah Mesrar ◽  
Mohamed Kacimi ◽  
Leonarda F. Liotta ◽  
F. Puleo ◽  
Mahfoud Ziyad

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohcin Akri ◽  
Shu Zhao ◽  
Xiaoyu Li ◽  
Ketao Zang ◽  
Adam F. Lee ◽  
...  

AbstractDry reforming of methane (DRM) is an attractive route to utilize CO2 as a chemical feedstock with which to convert CH4 into valuable syngas and simultaneously mitigate both greenhouse gases. Ni-based DRM catalysts are promising due to their high activity and low cost, but suffer from poor stability due to coke formation which has hindered their commercialization. Herein, we report that atomically dispersed Ni single atoms, stabilized by interaction with Ce-doped hydroxyapatite, are highly active and coke-resistant catalytic sites for DRM. Experimental and computational studies reveal that isolated Ni atoms are intrinsically coke-resistant due to their unique ability to only activate the first C-H bond in CH4, thus avoiding methane deep decomposition into carbon. This discovery offers new opportunities to develop large-scale DRM processes using earth abundant catalysts.


2017 ◽  
Vol 212 ◽  
pp. 159-174 ◽  
Author(s):  
Axel Löfberg ◽  
Jesús Guerrero-Caballero ◽  
Tanushree Kane ◽  
Annick Rubbens ◽  
Louise Jalowiecki-Duhamel

Sign in / Sign up

Export Citation Format

Share Document