Modeling Tectonic Heat Flow and Source Rock Maturity in the Rub

2014 ◽  
Author(s):  
R. Abdul Fattah ◽  
S. Meekes ◽  
J. Bouman ◽  
J. Ebbing ◽  
R. Haagmans
Keyword(s):  
2021 ◽  
Vol 13 (1) ◽  
pp. 1536-1551
Author(s):  
Nader A. A. Edress ◽  
Saudy Darwish ◽  
Amir Ismail

Abstract Geochemical and lithological investigations in the WON C-3X well record five organic-matter-rich intervals (OMRIs) of effective source rocks. These OMRIs correspond to moderate and good potentials. Two of these intervals occurred within the L-Kharita member of the Albian age represent 60.97% of the entire Albian thickness. The rest of OMRIs belongs to the Abu-Roash G and F members of the Late Cenomanian–Santonian age comprising 17.52 and 78.66% of their total thickness, respectively. The calculated heat flow of the studied basin is high within the range of 90.1–95.55 mW/m2 from shallower Abu-Roash F to deeper L-Kharita members. This high-heat flow is efficient for shallowing in the maximum threshold expulsion depth in the studied well to 2,000 m and active source rock depth limit to 2,750 m. Thermal maturity and burial history show that the source rock of L-Kharita entered the oil generation from 97 Ma till the late oil stage of 7.5 Ma, whereas the younger Abu-Roash G and F members have entered oil generation since 56 Ma and not reached peak oil yet. Hence, the source rock intervals from Abu-Roash F and G are promising for adequate oil generation.


2017 ◽  
Vol 57 (2) ◽  
pp. 733
Author(s):  
E. Frery ◽  
M. Ducros ◽  
L. Langhi ◽  
J. Strand ◽  
A. Ross

3D stratigraphic, structural, thermal and migration modelling has become an essential part of petroleum systems analysis for passive margins, especially if complex 3D facies patterns and extensive volcanic activity are observed. A better understanding of such underexplored offshore areas requires a refined 3D basin modelling approach, with the implementation of realistically sized volcanic intrusions, source rocks and reservoir intervals. In this study, an integrated modelling workflow based on a Great Australian Bight case study has been applied. The 244800-km2 3D model integrates well data, marine surveys, 3D stratigraphic forward modelling and 3D basin modelling to better predict the effects of 3D facies variations and heat flow anomalies on the determination of the source rock-enriched intervals, the source rock maturity history and the hydrocarbon migration pathways. Plausible sedimentary sequences have been estimated using a stratigraphic forward model constrained by the limited available well data, seismic interpretation and published tectonic basin history. We also took into account other datasets to produce a thermal history model, such as the location of known volcanic intrusion, volcanic seamounts, bottom hole temperature and surface heat flow measurements. Such basin modelling integrates multiple datatypes acquired in the same basin and provides an ideal platform for testing hypotheses on source rock richness or kinetics, as well as on hydrocarbon migration timing and pathways evolution. The model is flexible, can be easily refined around specific zones of interest and can be updated as new datasets, such as new seismic interpretations and data from new sampling campaigns and wells, are acquired.


2014 ◽  
Author(s):  
R. Abdul Fattah ◽  
S. Meekes ◽  
J. Bouman ◽  
J. Ebbing ◽  
R. Haagmans
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document