scholarly journals Preparation and Characterization of Latex Particles as Potential Physical Shale Stabilizer in Water-Based Drilling Fluids

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Junyi Liu ◽  
Zhengsong Qiu ◽  
Wei’an Huang ◽  
Dingding Song ◽  
Dan Bao

The poly(styrene-methyl methacrylate) latex particles as potential physical shale stabilizer were successfully synthesized with potassium persulfate as an initiator in isopropanol-water medium. The synthesized latex particles were characterized by Fourier transform infrared spectroscopy (FT-IR), particle size distribution measurement (PSD), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). FT-IR and TGA analysis confirmed that the latex particles were prepared by polymerization of styrene and methyl methacrylate and maintained good thermal stability. TEM and PSD analysis indicated that the spherical latex particles possessed unimodal distribution from 80 nm to 345 nm with the D90 value of 276 nm. The factors influencing particle size distribution (PSD) of latex particles were also discussed in detail. The interaction between latex particles and natural shale cores was investigated quantitatively via pore pressure transmission tests. The results indicated that the latex particles as potential physical shale stabilizer could be deformable to bridge and seal the nanopores and microfractures of shale to reduce the shale permeability and prevent pore pressure transmission. What is more, the latex particles as potential physical shale stabilizer work synergistically with chemical shale stabilizer to impart superior shale stability.

2014 ◽  
Vol 685 ◽  
pp. 59-63
Author(s):  
Xu Hao ◽  
Zhi Mei Liu ◽  
Jie Lin ◽  
Sheng Lu ◽  
De Hong Cheng ◽  
...  

To improve the properties of polyester fabric, the oktakis (tetra-methyl-ammonium)-T8-silisesquioxane (TMA-POSS) is applied to modify polyester fabric. TMA-POSS is synthesized by using tetraethyl orthosilicate and tetramethylammonium hydroxide and the structure of TMA-POSS is characterized by FT-IR spectra and the particle size distribution of TMA-POSS is measured by a size analyzer. Antistatic property, wetting property and dyeing performances of the modified polyester fabric are investigated. The results indicate that when the TMA-POSS concentration is larger than 4% (o.w.f.), the wetting angle reached up to 0; the peak voltage, attenuation cycle and capillary value are 1283.0 V, 16.0cm and 3.9s respectively.


2014 ◽  
Author(s):  
Cameron R. Turner ◽  
Matthew A. Barnes ◽  
Charles C.Y. Xu ◽  
Stuart E. Jones ◽  
Christopher L. Jerde ◽  
...  

1. Detecting aquatic macroorganisms with environmental DNA (eDNA) is a new survey method with broad applicability. However, the origin, state, and fate of aqueous macrobial eDNA - which collectively determine how well eDNA can serve as a proxy for directly observing organisms and how eDNA should be captured, purified, and assayed - are poorly understood. 2. The size of aquatic particles provides clues about their origin, state, and fate. We used sequential filtration size fractionation to measure, for the first time, the particle size distribution (PSD) of macrobial eDNA, specifically Common Carp (hereafter referred to as Carp) eDNA. We compared it to the PSDs of total eDNA (from all organisms) and suspended particle matter (SPM). We quantified Carp mitochondrial eDNA using a custom qPCR assay, total eDNA with fluorometry, and SPM with gravimetric analysis. 3. In a lake and a pond, we found Carp eDNA in particles from >180 to <0.2 µm, but it was most abundant from 1-10 µm. Total eDNA was most abundant below 0.2 µm and SPM was most abundant above 100 µm. SPM was ≤0.1% total eDNA, and total eDNA was ≤0.0004% Carp eDNA. 0.2 µm filtration maximized Carp eDNA capture (85%±6%) while minimizing total (i.e., non-target) eDNA capture (48%±3%), but filter clogging limited this pore size to a volume <250 mL. To mitigate this limitation we estimated a continuous PSD model for Carp eDNA and derived an equation for calculating isoclines of pore size and water volume that yield equivalent amounts of Carp eDNA. 4. Our results suggest that aqueous macrobial eDNA predominantly exists inside mitochondria or cells, and that settling plays an important role in its fate. For optimal eDNA capture, we recommend 0.2 µm filtration or a combination of larger pore size and water volume that exceeds the 0.2 µm isocline. In situ filtration of large volumes could maximize detection probability when surveying large habitats for rare organisms. Our method for eDNA particle size analysis enables future research to compare the PSDs of eDNA from other organisms and environments, and to easily apply them for ecological monitoring.


REAKTOR ◽  
2014 ◽  
Vol 15 (2) ◽  
pp. 132 ◽  
Author(s):  
Nurul - Widiastuti ◽  
Farhanah Thalib ◽  
Didik Prasetyoko ◽  
Hamzah Fansuri

Abstract PARTICLE SIZE AND CRYSTAL CONFORMATION OF SYNTHESIZED ZEOLITE-A WITH TETRAPROPYLAMMONIUM HYDROXIDE (TPAOH) ADDITION. The aims of this research is to study the effect of tetrapropylammonium hydroxide (TPAOH) concentration in the synthesis of zeolite A to its physical characteristics such as crystallinity, crystal conformation and average crystal size. The zeolite A was synthesized with composition 3.165 Na2O : 1.000 Al2O3 : 1.926 SiO2 : 128 H2O : x TPAOH where x was 0; 0.0385; 0.0577; 0.0770; 0.1540 and 4.1602. The zeolite was crystalized under hydrothermal condition in a stainless steel autoclave at 100°C for 5 hours. The resulting crystal was washed with distilled water until pH 8 and then dried in an oven at 80oC for 24 hours. FT-IR and XRD analysis results show that the synthesized zeolite A at x = 4.1602 has the lowest crystallinity. It is estimated due to the mass of TPAOH was four times higger than the mass of zeolite framework components (Si and Al). SEM and PSD (Particle Size Distribution) analysis results show that TPAOH concentration affected the crystal conformation and the average size of zeolite A particles. The formation of chained crystal conformation was caused by the electrostatic interactions between TPA+ and negatively charge of zeolite framework. In addition, the particel size of the synthesized zeolite A at x = 0.1540 was 2.024 µm which was smaller than the particel size of the synthesized zeolite A without TPAOH, which was 3.534 µm. Keywords: average size of particles; crystal conformation; TPAOH; zeolite A Abstrak Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi TPAOH (Tetrapropilamonium hidroksida) dalam sintesis zeolit A terhadap sifat fisikanya yang meliputi kekristalan, konformasi kristal dan ukuran rata-rata kristal yang terbentuk. Pada penelitian   ini   zeolit A   disintesis    dengan komposisi 3,165 Na2O : 1 Al2O3 : 1,926 SiO2 :128 H2O: x TPAOH. Konsentrasi TPAOH divariasikan dengan nilai x adalah 0; 0,0385; 0,0577; 0,0770; 0,1540 dan 4,1602. Metode hidrotermal digunakan dalam penelitian ini dengan kondisi suhu  hidrotermal 100°C dan waktu kristalisasi selama 5 jam dengan pH pencucian 8. Hasil karakterisasi menggunakan FT-IR (Fourier Transform – Infrared Spectroscopy) dan XRD (X-Ray Diffraction)  menunjukkan bahwa zeolit A yang disintesis dengan x = 4,1602 memiliki kekristalan terendah. Hal ini diperkirakan terjadi karena masa TPAOH yang digunakan empat kali lebih besar daripada masa penyusun zeolit (Si dan Al). Berdasarkan hasil karakterisasi menggunakan SEM (Scanning Electron Microscopy) dan PSD (Particle Size Distribution), dapat diketahui bahwa TPAOH berpengaruh terhadap konformasi kristal dan rata-rata ukuran kristalnya.  Terbentuknya konformasi kristal seperti rantai disebabkan oleh adanya interaksi elektrostatik antara muatan positif pada TPA+ dan muatan negatif dari kerangka zeolit. Zeolit A yang disintesis dengan x = 0,1540 memiliki ukuran partikel rata-rata 2,024 µm yang lebih kecil dari daripada zeolit A tanpa TPAOH yaitu sebesar 3,534 µm. Kata kunci : ukuran partakel rata-rata; konformasi kristal; TPAOH; zeolite A 


Sign in / Sign up

Export Citation Format

Share Document