Electron-diffraction studies in synthetic polymer materials

Author(s):  
D.T. Grubb

Diffraction studies in polymeric and other beam sensitive materials may bring to mind the many experiments where diffracted intensity has been used as a measure of the electron dose required to destroy fine structure in the TEM. But this paper is concerned with a range of cases where the diffraction pattern itself contains the important information.In the first case, electron diffraction from paraffins, degraded polyethylene and polyethylene single crystals, all the samples are highly ordered, and their crystallographic structure is well known. The diffraction patterns fade on irradiation and may also change considerably in a-spacing, increasing the unit cell volume on irradiation. The effect is large and continuous far C94H190 paraffin and for PE, while for shorter chains to C 28H58 the change is less, levelling off at high dose, Fig.l. It is also found that the change in a-spacing increases at higher dose rates and at higher irradiation temperatures.

Author(s):  
Guoqing Zhang ◽  
Xuexin Wang ◽  
Jiangang Zhang ◽  
Dajie Zhuang ◽  
Chaoduan Li ◽  
...  

The isotopes of uranium and their daughter nuclides inside the UO2 pellet emit mono-energetic electrons and beta rays, which generate rather high dose rate near the UO2 pellet and could cause exposure to workers. In this work calculations of electron dose rates have been carried out with Monte Carlo codes, MCNPX and Geant4, for a UO2 pellet and a fuel rod. Comparisons between calculations and measurements have been carried out to verify the calculation results. The results could be used to estimate the dose produced by electrons and beta rays, which could be used to make optimization for radiation protection purpose.


Author(s):  
W.F. Tivol ◽  
J.N. Turner ◽  
D.L. Dorset

The use of high-energy (1200 kV) electrons has been shown to be advantageous in the ab initio structure analysis from electron diffraction of organic compounds. Dynamical scattering from compounds containing heavy atoms may make such an analysis difficult or impossible with data obtained at conventional voltages. In the case that even high-energy electrons do not produce diffraction intensities sufficiently close to the kinematic values, criteria other than the simple minimization of the R-factor must be used to seek the correct structure solution.Copper perbromophthalocyanine (Cu-BrPTCY) was grown epitaxially from the vapor phase onto a clean KCl crystal face. Electron diffraction patterns were obtained from crystals tilted at 26.5° and oriented so that the electron beam was parallel to the c-axis. The AEI EM7 high-voltage electron microscope was used at a voltage of 1200 kV in diffraction mode with a 10 μm selected area aperture. The data were obtained using a minimal electron dose and recorded on DuPont Lo-dose Mammography film (See Fig. 1). Intensities were measured on a Joyce-Loebl MkIIIC flat bed microdensitometer by integrating under the peaks.


2020 ◽  
Vol 76 (6) ◽  
pp. 713-718
Author(s):  
Semën Gorfman

Simple algorithms are proposed for the transformation of lattice basis vectors to a specific target. In the first case, one of the new basis vectors is aligned to a predefined lattice direction, while in the second case, two of the new basis vectors are brought to a lattice plane with predefined Miller indices. The multi-dimensional generalization of the algorithm is available in the supporting materials. The algorithms are useful for such crystallographic operations as simulation of zone planes (i.e. geometry of electron diffraction patterns) or transformation of a unit cell for surface or cleavage energy calculations. The most general multi-dimensional version of the algorithm may be useful for the analysis of quasiperiodic crystals or as an alternative method of calculating Bézout coefficients. The algorithms are demonstrated both graphically and numerically.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Dan Shi ◽  
Brent L Nannenga ◽  
Matthew G Iadanza ◽  
Tamir Gonen

We demonstrate that it is feasible to determine high-resolution protein structures by electron crystallography of three-dimensional crystals in an electron cryo-microscope (CryoEM). Lysozyme microcrystals were frozen on an electron microscopy grid, and electron diffraction data collected to 1.7 Å resolution. We developed a data collection protocol to collect a full-tilt series in electron diffraction to atomic resolution. A single tilt series contains up to 90 individual diffraction patterns collected from a single crystal with tilt angle increment of 0.1–1° and a total accumulated electron dose less than 10 electrons per angstrom squared. We indexed the data from three crystals and used them for structure determination of lysozyme by molecular replacement followed by crystallographic refinement to 2.9 Å resolution. This proof of principle paves the way for the implementation of a new technique, which we name ‘MicroED’, that may have wide applicability in structural biology.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1455-C1455 ◽  
Author(s):  
Colin Ophus ◽  
Peter Ercius ◽  
Michael Sarahan ◽  
Cory Czarnik ◽  
Jim Ciston

Traditional scanning transmission electron microscopy (STEM) detectors are monolithic and integrate a subset of the transmitted electron beam signal scattered from each electron probe position. These convergent beam electron diffraction patterns (CBED) are extremely rich in information, containing localized information on sample structure, composition, phonon spectra, three-dimensional defect crystallography and more. Many new imaging modes become possible if the full CBED pattern is recorded at many probe positions with millisecond dwell times. In this study, we have used a Gatan K2-IS direct electron detection camera installed on an uncorrected FEI Titan-class transmission electron microscope to record 4D-STEM probe diffraction patterns on a variety of samples at up to 1600 frames per second. As an example, a 4D-STEM dataset for a multilayer stack of epitaxial SrTiO3 and mixed LaMnO3-SrTiO3 is plotted in Figure 1. Figure 1A shows a HAADF micrograph of the multilayer along a (001) zone axis. Only the A sites (Sr and La) are visible in this micrograph and the composition can be roughly determined from the relative brightness. One possible 4D-STEM technique is position-averaged convergent beam electron diffraction (PACBED) described by LeBeau et al. [1]. We can easily construct ideal PACBED patterns by averaging the probe images over each unit cell fitted from Figure 1A, which is shown in Figure 1B. By matching these patterns to PACBED images simulated with the multislice method we can precisely determine parameters such as sample thickness and composition, the latter of which is plotted in Figure 1C. For comparison, the composition has also been determined with electron energy loss spectroscopy (EELS) in a separate experiment, shown in Figure 1D. The composition range of 0-85% LaMnO3 measured by PACBED is in good agreement with the EELS measurements. In this talk we will demonstrate several other possible uses for 4D-STEM datasets.


2014 ◽  
Vol 369 (1647) ◽  
pp. 20130313 ◽  
Author(s):  
Henry N. Chapman ◽  
Carl Caleman ◽  
Nicusor Timneanu

X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be collected from samples at doses of 1000 MGy or higher. The sample is vaporized by the intense pulse, but not before the scattering that gives rise to the diffraction pattern takes place. Consequently, only a single flash diffraction pattern can be recorded from a crystal, giving rise to the method of serial crystallography where tens of thousands of patterns are collected from individual crystals that flow across the beam and the patterns are indexed and aggregated into a set of structure factors. The high-dose tolerance and the many-crystal averaging approach allow data to be collected from much smaller crystals than have been examined at synchrotron radiation facilities, even from radiation-sensitive samples. Here, we review the interaction of intense femtosecond X-ray pulses with materials and discuss the implications for structure determination. We identify various dose regimes and conclude that the strongest achievable signals for a given sample are attained at the highest possible dose rates, from highest possible pulse intensities.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1063-C1063
Author(s):  
Tamir Gonen

We demonstrate that it is feasible to determine high-resolution protein structures by electron crystallography of three-dimensional crystals in an electron cryo-microscope (CryoEM). Lysozyme microcrystals were frozen on an electron microscopy grid, and electron diffraction data collected to 1.7Å resolution. We developed a data collection protocol to collect a full-tilt series in electron diffraction to atomic resolution. A single tilt series contains up to 90 individual diffraction patterns collected from a single crystal with tilt angle increment of 0.1 - 10and a total accumulated electron dose less than 10 electrons per angstrom squared. We indexed the data from three crystals and used them for structure determination of lysozyme by molecular replacement followed by crystallographic refinement to 2.9Å resolution. In this seminar I will present our initial proof of principle study and highlight the major advances since the first publication.


Author(s):  
B.B. Chang ◽  
D.F. Parsons

High resolution electron diffraction patterns from wet unstained protein-crystals have been successfully obtained by using very low electron dose (∽10-2 e/Å2, much smaller dose than used by Unwin and Henderson (1975) for electron diffraction of their crystals). This enabled us to follow the radiation damage of the protein crystal due to increasing dosage by recording successive diffraction patterns given by the same crystal. Changes in intensities of both the high and the low order reflections can be studied. Another important consequence is that very low dose electron diffraction can be obtained from the same crystal and iterative procedures such as Gerchberg and Saxton's technique can be applied.The electron diffraction work with very low dose was performed at 200 kV using the environmental chamber in the Jeolco 200. To achieve best electron diffraction conditions with the specimen in the hydration chamber, the objective and intermediate lens currents have been changed.


Author(s):  
Christoph Burmester ◽  
Kenneth C. Holmes ◽  
Rasmus R. Schröder

Electron crystallography of 2D protein crystals can yield models with atomic resolution by taking Fourier amplitudes from electron diffraction and phase information from processed images. Imaging at atomic resolution is more difficult than the recording of corresponding high resolution electron diffraction patterns. Therefore attempts have been made to retrieve phase information from diffraction from heavy atom labelled protein crystals. The expected differences between native and labelled crystals are small, therefore a high experimental accuracy is necessary. This is achieved by the use of energy filter TEM and image plates, as dicussed in. Here we present electron diffraction data obtained from frozen hydrated 3D protein crystals with an energy filter microspcope and a specially designed image plate scanner. Data were recorded for the native crystal as well as for two different heavy atom derivatives. Differences between the native and the derivate forms can be detected and are significant.Electron diffraction patterns from frozen hydrated catalase crystals were recorded on an EFTEM Zeiss 912 Ω (120kV, zero loss mode, energy width ΔE=10eV, electron dose 5 e-/A2) using image plates and a quasi confocal scanner readout.


Author(s):  
M. Isaacson ◽  
M.L. Collins ◽  
M. Listvan

Over the past five years it has become evident that radiation damage provides the fundamental limit to the study of blomolecular structure by electron microscopy. In some special cases structural determinations at very low doses can be achieved through superposition techniques to study periodic (Unwin & Henderson, 1975) and nonperiodic (Saxton & Frank, 1977) specimens. In addition, protection methods such as glucose embedding (Unwin & Henderson, 1975) and maintenance of specimen hydration at low temperatures (Taylor & Glaeser, 1976) have also shown promise. Despite these successes, the basic nature of radiation damage in the electron microscope is far from clear. In general we cannot predict exactly how different structures will behave during electron Irradiation at high dose rates. Moreover, with the rapid rise of analytical electron microscopy over the last few years, nvicroscopists are becoming concerned with questions of compositional as well as structural integrity. It is important to measure changes in elemental composition arising from atom migration in or loss from the specimen as a result of electron bombardment.


Sign in / Sign up

Export Citation Format

Share Document