Permeability Computations of Shale Gas by the Pore-Scale Monte Carlo Molecular Simulations

Author(s):  
Jun Li ◽  
Abdullah S. Sultan
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5976
Author(s):  
Filip Simeski ◽  
Arnout M. P. Boelens ◽  
Matthias Ihme

Capillary condensation phenomena are important in various technological and environmental processes. Using molecular simulations, we study the confined phase behavior of fluids relevant to carbon sequestration and shale gas production. As a first step toward translating information from the molecular to the pore scale, we express the thermodynamic potential and excess adsorption of methane, nitrogen, carbon dioxide, and water in terms of the pore’s geometric properties via Minkowski functionals. This mathematical reconstruction agrees very well with molecular simulations data. Our results show that the fluid molecular electrostatic moments are positively correlated with the number of adsorption layers in the pore. Moreover, stronger electrostatic moments lead to adsorption at lower pressures. These findings can be applied to improve pore-scale thermodynamic and transport models.


2021 ◽  
Vol 83 (3) ◽  
pp. 372-378
Author(s):  
A. A. Sizova ◽  
S. A. Grintsevich ◽  
M. A. Kochurin ◽  
V. V. Sizov ◽  
E. N. Brodskaya

Abstract Grand canonical Monte Carlo simulations were performed to study the occupancy of structure I multicomponent gas hydrates by CO2/CH4, CO2/N2, and N2/CH4 binary gas mixtures with various compositions at a temperature of 270 K and pressures up to 70 atm. The presence of nitrogen in the gas mixture allows for an increase of both the hydrate framework selectivity to CO2 and the amount of carbon dioxide encapsulated in hydrate cages, as compared to the CO2/CH4 hydrate. Despite the selectivity to CH4 molecules demonstrated by N2/CH4 hydrate, nitrogen can compete with methane if the gas mixture contains at least 70% of N2.


2020 ◽  
Vol 236 ◽  
pp. 03003
Author(s):  
Jayesh S. Bhatt

An introductory account of using molecular simulations to deduce solution structure of macromolecules using small angle neutron scattering data is presented for biologists. The presence of a liquid solution provides mobility to the molecules, making it difficult to pin down their structure. Here a simple introduction to molecular dynamics and Monte Carlo techniques is followed by a recipe to use the output of the simulations along with the scattering data in order to infer the structure of macromolecules when they are placed in a liquid solution. Some practical issues to be watched for are also highlighted.


Sign in / Sign up

Export Citation Format

Share Document