The Study of Surfactant Huff and Puff of Horizontal Well with SRV in Tight Oil Reservoirs

Author(s):  
Li Weirong ◽  
Dong Zhenzhen ◽  
Lei Gang ◽  
Wang Cai ◽  
Wang Huijie
2017 ◽  
Vol 151 ◽  
pp. 159-168 ◽  
Author(s):  
Jinghong Hu ◽  
Chong Zhang ◽  
Zhenhua Rui ◽  
Yanlong Yu ◽  
Zhangxin Chen

2018 ◽  
Vol 36 (4) ◽  
pp. 1510-1516
Author(s):  
Linjing Xu ◽  
Guoyong Wang ◽  
Tianyu Liu ◽  
Naizhen Liu ◽  
Shicheng Zhang ◽  
...  

2020 ◽  
Vol 38 (6) ◽  
pp. 2217-2230
Author(s):  
Lijun Lin ◽  
Wei Lin ◽  
Shengchun Xiong ◽  
Zhengming Yang

Staged fracturing horizontal well technology is an important means of improving tight reservoir development efficiency. Taking a typical tight oil block in the Oilfield A as the studied area, the vertical well–horizontal well joint arrangement pattern is adopted in this study. The energy supplementary development effects of multiple permeability scales, different arrangement spacing, and different media (H2O, CO2) are discussed through the numerical simulation method. Combined with the principles of petroleum technology economics, the economic evaluation model for staged fracturing horizontal wells in tight oil reservoir development is proposed, thereby determining the technical boundary and economic boundary of supplementary energy development with different media. Studies indicate that the technical boundary and economic boundary of water-flooding development in the Oilfield A are 0.4 and 0.8 mD, respectively, and the technical boundary and economic boundary of CO2-flooding development are 0.1 and 0.4 mD, respectively. This study provides theoretical support for field operation of Oilfield A and guidance for selection of development mode for tight oil reservoirs.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ruizhong Jiang ◽  
Jianchun Xu ◽  
Zhaobo Sun ◽  
Chaohua Guo ◽  
Yulong Zhao

A mathematical model of multistage fractured horizontal well (MsFHW) considering stimulated reservoir volume (SRV) was presented for tight oil reservoirs. Both inner and outer regions were assumed as single porosity media but had different formation parameters. Laplace transformation method, point source function integration method, superposition principle, Stehfest numerical algorithm, and Duhamel’s theorem were used comprehensively to obtain the semianalytical solution. Different flow regimes were divided based on pressure transient analysis (PTA) curves. According to rate transient analysis (RTA), the effects of related parameters such as SRV radius, storativity ratio, mobility ratio, fracture number, fracture half-length, and fracture spacing were analyzed. The presented model and obtained results in this paper enrich the performance analysis models of MsFHW considering SRV.


Sign in / Sign up

Export Citation Format

Share Document