scholarly journals Soil Solarization in a Greenhouse for Controlling Fecal Contamination

2011 ◽  
Vol 49 (4) ◽  
pp. 185-191 ◽  
Author(s):  
Shengjin WU ◽  
Motoki NISHIHARA ◽  
Yoshie KAWASAKI ◽  
Akitoshi YOKOYAMA ◽  
Kei MATSUURA ◽  
...  
Agronomie ◽  
2001 ◽  
Vol 21 (8) ◽  
pp. 757-765 ◽  
Author(s):  
Giovanni Mauromicale ◽  
Giuseppe Restuccia ◽  
Mario Marchese

2015 ◽  
Vol 2015 (12) ◽  
pp. 1884-1886
Author(s):  
Charles P Gerba ◽  
Bradley W Schmitz ◽  
Alexander N Wassimi ◽  
Ian L Pepper

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1804
Author(s):  
Cassi J. Gibson ◽  
Abraham K. Maritim ◽  
Jason W. Marion

Quantitatively assessing fecal indicator bacteria in drinking water from limited resource settings (e.g., disasters, remote areas) can inform public health strategies for reducing waterborne illnesses. This study aimed to compare two common approaches for quantifying Escherichia coli (E. coli) density in natural water versus the ColiPlate™ kit approach. For comparing methods, 41 field samples from natural water sources in Kentucky (USA) were collected. E. coli densities were then determined by (1) membrane filtration in conjunction with modified membrane-thermotolerant E. coli (mTEC) agar, (2) Idexx Quanti-Tray® 2000 with the Colilert® substrate, and (3) the Bluewater Biosciences ColiPlate kit. Significant correlations were observed between E. coli density data for all three methods (p < 0.001). Paired t-test results showed no difference in E. coli densities determined by all the methods (p > 0.05). Upon assigning modified mTEC as the reference method for determining the World Health Organization-assigned “very high-risk” levels of fecal contamination (> 100 E. coli CFU/100 mL), both ColiPlate and Colilert exhibited excellent discrimination for screening very high-risk levels according to the area under the receiver operating characteristic curve (~89%). These data suggest ColiPlate continues to be an effective monitoring tool for quantifying E. coli density and characterizing fecal contamination risks from water.


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0224333 ◽  
Author(s):  
Drew Capone ◽  
Zaida Adriano ◽  
David Berendes ◽  
Oliver Cumming ◽  
Robert Dreibelbis ◽  
...  

Plant Disease ◽  
2002 ◽  
Vol 86 (12) ◽  
pp. 1388-1395 ◽  
Author(s):  
R. J. McGovern ◽  
R. McSorley ◽  
M. L. Bell

Two experiments were conducted during autumn 1997 and 1998 in west-central Florida to evaluate the effectiveness of soil solarization alone and in combination with the biological control agents Streptomyces lydicus (Actinovate) and Pseudomonas chlororaphis (syn. P. aureofasciens, AtEze) and the reduced-risk fungicide fludioxonil (Medallion) in managing soilborne pathogens of impatiens (Impatiens × wallerana, ‘Accent Burgundy’). Naturally infested soil was solarized for 47 or 48 days during September and October using two layers of 25-μm clear, low-density polyethylene mulch, separated by an air space of up to 7.5 cm. Solarization decreased the final incidence and progress of Rhizoctonia crown rot and blight, incidence of Pythium spp. in roots, and root discoloration, and increased shoot biomass in both experiments. The technique also consistently reduced root-knot severity and population densities of Meloidogyne incognita, Dolichodorus heterocephalus, Paratrichodorus minor, and Criconemella spp. The incidence of Rhizoctonia crown rot and blight was reduced by fludioxonil, but not by the biological control agents.


Sign in / Sign up

Export Citation Format

Share Document