scholarly journals Noise Reduction Method for Time Series Data of plant. Growth with Adjustment of Cut off Frequency of Low Pass Filter.

1996 ◽  
Vol 8 (4) ◽  
pp. 237-243
Author(s):  
Hiroshi SHIMIZU
2021 ◽  
Author(s):  
Shu Kaneko ◽  
Katsumi Hattori ◽  
Toru Mogi ◽  
Chie Yoshino

<p>Off the coast of the Boso Peninsula, there is a triple junction of the Pacific Plate, the Philippine Sea Plate, and the North American Plate and the Boso Peninsula is one of the seismically active areas in Japan. There are also epicenter areas such as the 1703 Genroku Kanto Earthquake (M8.2), the 1923 Taisho Kanto Earthquake (M7.9), and the Boso Slow Slip which occurs every 6 years, which are geologically interesting places. To estimate the subsurface resistivity structure of the whole Boso area, Magnetotelluric (MT) survey with 41 sites (inter-sites distance of 7 km) has been conducted in 2014-2016, using U43 (12 sites, 1 Hz sampling ; Tierra Technica) and MTU-5, 5A, net (41 sites, 15, 150, and 2400 Hz sampling; Phoenix Geophysics). However, the Boso area is greatly affected by leak current from DC-driven trains, factories, and power lines, so the observed data are contaminated by artificial noises. When we tried to apply the conventional noise reduction method (e.g., remote reference (Gamble et al., 1979) and BIRRP (Chave and Thomson, 2004)) in frequency domain, the obtained MT sounding curve was not ideal. In particular, the phase between the periods of 20 and 400 sec was close to 0 degrees. It suggests that the method used is insufficient to reduce the near-field effect for the Boso data. Thus, we developed a new noise reduction method using MSSA (Multi-channel Singular Spectrum Analysis) as a pre-processing method in time domain.</p><p>The procedure is as follows;</p><p>(1) Decompose 6 component data (Hx, Hy, Ex, Ey, Hxr and Hyr: H and E means magnetic and electric field, respectively, x and y indicates NS and EW component, and r denotes the reference field observed at a quiet station) using MSSA into 6×M principal components (PCs).  Here, M shows the window length of MSSA.</p><p>(2) Check contribution and periods of each PC and eliminate the PCs which are corresponding to the longer periods of variation. That is “detrend” of the original data.</p><p>(3) Apply the second MSSA to the detrended time series data to separate signals and noises shorter than 400 sec.</p><p>(4) Calculating correlation coefficients between H and Hr and between E and Hr for each PC and select the PCs with higher correlation to reconstruct time series data to make MT analysis.</p><p>Then, we perform MT analysis by BIRRP to estimate apparent resistivity,</p><p>As a result, the coherences of H-Hr, and E-Hr were improved and the MT sounding curve became smoother than those results by the conventional noise reduction methods. This indicated that the effectiveness of the proposed noise reduction. However, further investigation in different periods and sites will be required.</p>


Author(s):  
M. Arnold ◽  
M. Hoyer ◽  
S. Keller

Abstract. This study focuses on detecting vehicle crossings (events) with ground-based interferometric radar (GBR) time series data recorded at bridges in the course of critical infrastructure monitoring. To address the challenging event detection and time series classification task, we rely on a deep learning (DL) architecture. The GBR-displacement data originates from real-world measurements at two German bridges under normal traffic conditions. As preprocessing, we only apply a low-pass filter. We develop and evaluate a one-dimensional convolutional neural network (CNN) to achieve a solely data-driven event detection. As a baseline machine learning approach, we use a Random Forest (RF) with a selected feature-based input. Both models’ performance is evaluated on two datasets by focusing on identifying events and pure bridge oscillations. Generally, the event classification results are promising, and the CNN outperforms the RF with an overall accuracy of 94.7% on the test subset. By relying on an entirely unknown second dataset, we focus on the models’ performances regarding the distinction between events and decays. On this dataset, the CNN meets this challenge successfully, while the feature-based RF classifies the majority of non-event decays as events. To sum up, the presented results reveal the potential of a data-driven DL approach concerning the detection of bridge crossing events in GBR-based displacement time series data. Based on such an event detection, a prospective assessment of bridge conditions seems feasible as an extension to previous structural health monitoring approaches.


Pramana ◽  
1999 ◽  
Vol 52 (1) ◽  
pp. 25-37 ◽  
Author(s):  
A. Bhowal ◽  
T. K. Roy

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Soojun Kim ◽  
Huiseong Noh ◽  
Narae Kang ◽  
Keonhaeng Lee ◽  
Yonsoo Kim ◽  
...  

The aim of this study is to evaluate the filtering techniques which can remove the noise involved in the time series. For this, Logistic series which is chaotic series and radar rainfall series are used for the evaluation of low-pass filter (LF) and Kalman filter (KF). The noise is added to Logistic series by considering noise level and the noise added series is filtered by LF and KF for the noise reduction. The analysis for the evaluation of LF and KF techniques is performed by the correlation coefficient, standard error, the attractor, and the BDS statistic from chaos theory. The analysis result for Logistic series clearly showed that KF is better tool than LF for removing the noise. Also, we used the radar rainfall series for evaluating the noise reduction capabilities of LF and KF. In this case, it was difficult to distinguish which filtering technique is better way for noise reduction when the typical statistics such as correlation coefficient and standard error were used. However, when the attractor and the BDS statistic were used for evaluating LF and KF, we could clearly identify that KF is better than LF.


2012 ◽  
Vol 14 (3) ◽  
pp. 574-584 ◽  
Author(s):  
B. Bhattacharya ◽  
T. van Kessel ◽  
D. P. Solomatine

A problem of predicting suspended particulate matter (SPM) concentration on the basis of wind and wave measurements and estimates of bed shear stress done by a numerical model is considered. Data at a location at 10 km offshore from Noordwijk in the Dutch coastal area is used. The time series data have been filtered with a low pass filter to remove short-term fluctuations due to noise and tides and the resulting time series have been used to build an artificial neural network (ANN) model. The accuracy of the ANN model during both storm and calm periods was found to be high. The possibilities to apply the trained ANN model at other locations, where the model is assisted by the correctors based on the ratio of long-term average SPM values for the considered location to that for Noordwijk (for which the model was trained), have been investigated. These experiments demonstrated that the ANN model's accuracy at the other locations was acceptable, which shows the potential of the considered approach.


Sign in / Sign up

Export Citation Format

Share Document