scholarly journals Taxonomic and trophic groups diversity of soil invertebrates positively respond to restoration of riparian forests

2021 ◽  
Vol 32 (1) ◽  
pp. 010-018
Author(s):  
Stella Ferreira Biondi ◽  
Rodrigo Lopes Ferreira ◽  
Yasmine Antonini
Soil Research ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 703 ◽  
Author(s):  
N. L. Schon ◽  
A. D. Mackay ◽  
M. A. Minor

It is often difficult to compare the effects of land use on soil invertebrates across different soil types, as management practices are often adjusted to compensate for soil differences. A mosaic of two contrasting and co-occurring soils offered a unique opportunity to examine the influence of common management practices on soil invertebrates (macrofauna, mesofauna, and nematodes). Treatments established on a well-structured Andosol soil and co-occurring poorly structured Gleysol included a legume-based pasture grazed at 2.3 cows/ha and nitrogen (N) fertilised pastures grazed at 3 and 3.8 cows/ha, with the 3.8 cows/ha treatment also receiving maize supplementation. Low abundance (<13 000 individuals/m2) and diversity (four species) of Oribatida was a feature of both soils, reflecting the low porosity of the two contrasting, co-occurring pastoral soils, despite the Gleysol soil being more susceptible to treading than the Andosol. The lack of difference might reflect the ongoing disturbance from livestock treading on both soils. Nematode trophic groups behaved most predictably across both soils, with plant-feeding and bacterial-feeding nematodes increasing with the use of N fertiliser. Despite potentially more organic material available for incorporation into the soil profile with increasing inputs of N fertiliser and use of feed supplement, lower abundances of anecic earthworms, Collembola, and Oribatida are reported. Both direct and indirect effects of livestock treading on the decomposer community in intensive systems might be factors limiting the incorporation of organic matter from the soil surface into the profile to sustain soil carbon.


Acarina ◽  
2020 ◽  
Vol 28 (1) ◽  
pp. 55-64
Author(s):  
Omid Joharchi ◽  
Elizabeth Hugo-Coetzee ◽  
Sergey G. Ermilov ◽  
Alexander A. Khaustov

Hypoaspisella spiculifer comb. n. is redescribed on the basis of adult females, collected from soil in South Africa. Hypoaspisella spiculifer fits well with the current concept of the genus Hypoaspisella Bernhard. The chelicerae of this species are similar to those of free-living mites, suggesting that it may be a predator of small soil invertebrates.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 329
Author(s):  
Dorota Kawalko ◽  
Paweł Jezierski ◽  
Cezary Kabala

The elimination of flooding and lowering of the groundwater table after large-scale river regulation allow deep penetration of soils by plant roots, soil fauna, and microorganisms, thus creating favorable conditions for advanced pedogenesis. Although the changes of the morphology and properties of agriculturally used drained alluvial soils in Central Europe have been well characterized, studies in riparian forests remain insufficient. An analysis of 21 profiles of forest soils located on the Holocene river terrace (a floodplain before river regulation and embankment) in SW Poland confirmed a noticeable pedogenic transformation of soil morphology and properties resulting from river regulation. Gleyic properties were in most profiles replaced with stagnic properties, testifying to a transition from dominant groundwater supply to precipitation-water supply. The development of a diagnostic mollic and cambic horizons, correlated with the shift in soil classification from Fluvisols to Phaeozems, and in the majority, to Cambisols, demonstrated a substantial change in habitat conditions. The transformation of alluvial soils may result in an inevitable modification of forest management in the river valley, including quantitative alteration in species composition of primarily riparian forests.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Claire Michelet ◽  
Daniela Zeppilli ◽  
Cédric Hubas ◽  
Elisa Baldrighi ◽  
Philippe Cuny ◽  
...  

Bioindicators assess the mangroves ecological state according to the types of pressures but they differ with the ecosystem’s specificities. We investigated benthic meiofauna diversity and structure within the low human-impacted mangroves in French Guiana (South America) in response to sediment variables with various distances to the main city. Contaminant’s concentrations differed among the stations, but they remained below toxicity guidelines. Meiofauna structure (Foraminifera, Kinorhyncha, Nematoda) however varied accordingly. Nematode’s identification brought details on the sediment’s quality. The opportunistic genus Paraethmolaimus (Jensen, 1994) strongly correlated to the higher concentrations of Hg, Pb. Anoxic sediments were marked by organic enrichment in pesticides, PCB, and mangrove litter products and dominance of two tolerant genus, Terschellingia (de Man, 1888) and Spirinia (Gerlach, 1963). In each of these two stations, we found many Desmodora individuals (de Man, 1889) with the presence of epibionts highlighting the nematodes decreased fitness and defenses. Oxic sediments without contaminants were distinguished by the sensitive genera Pseudocella (Filipjev, 1927) and a higher diversity of trophic groups. Our results suggested a nematodes sensitivity to low contaminants concentrations. Further investigations at different spatio-temporal scales and levels of deterioration, would be necessary to use of this group as bioindicator of the mangroves’ ecological status.


Sign in / Sign up

Export Citation Format

Share Document