Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breeds1

2013 ◽  
Vol 91 (9) ◽  
pp. 4069-4079 ◽  
Author(s):  
D. N. Do ◽  
A. B. Strathe ◽  
J. Jensen ◽  
T. Mark ◽  
H. N. Kadarmideen
1982 ◽  
Vol 53 (6) ◽  
pp. 388-394
Author(s):  
Yoshizane MAEDA ◽  
Hiromichi KAWASAKI ◽  
Tsutomu HASHIGUCHI

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 347-347
Author(s):  
Pourya Davoudi ◽  
Duy Ngoc Do ◽  
Guoyu Hu ◽  
Siavash Salek Ardestani ◽  
Younes Miar

Abstract Feed cost is the major input cost in the mink industry and thus improvement of feed efficiency through selection for high feed efficient mink is necessary for the mink farmers. The objective of this study was to estimate the heritability, phenotypic and genetic correlations for different feed efficiency measures, including final body weight (FBW), daily feed intake (DFI), average daily gain (ADG), feed conversion ratio (FCR) and residual feed intake (RFI). For this purpose, 1,088 American mink from the Canadian Center for Fur Animal Research at Dalhousie Faculty of Agriculture were recorded for daily feed intake and body weight from August 1 to November 14 in 2018 and 2019. The univariate models were used to test the significance of sex, birth year and color as fixed effects, and dam as a random effect. Genetic parameters were estimated via bivariate models using ASReml-R version 4. Estimates of heritabilities (±SE) were 0.41±0.10, 0.37±0.11, 0.33±0.14, 0.24±0.09 and 0.22±0.09 for FBW, DFI, ADG, FCR and RFI, respectively. The genetic correlation (±SE) was moderate to high between FCR and RFI (0.68±0.15) and between FCR and ADG (-0.86±0.06). In addition, RFI had low non-significant (P > 0.05) genetic correlations with ADG (0.04 ± 0.26) and BW (0.16 ± 0.24) but significant (P < 0.05) high genetic correlation with DFI (0.74 ± 0.11) indicating that selection for lower RFI will reduce feed intake without adverse effects on the animal size and growth rate. The results suggested that RFI can be implemented in genetic/genomic selection programs to reduce feed intake in the mink production system.


1996 ◽  
Vol 76 (1) ◽  
pp. 81-87 ◽  
Author(s):  
L. Q. Fan ◽  
J. W. Wilton ◽  
P. E. Colucci

Genetic parameters of feed intake and efficiency and production traits for lactating beef cows were estimated from data collected from 1980 to 1988 at the Elora Beef Research Centre, Guelph, Ontario. Estimates were obtained using restricted maximum likelihood (REML) with an individual animal model with year–season–treatment, sex of calf, parity, breeding system, covariate daily change of backfat depth and direct genetic and permanent environmental effects. The data included 1174 observations, 511 cows, 369 dam–maternal grand dam pairs and 245 sires of cows. Feed efficiency for milk was calculated as milk yield relative to energy consumed for milk and maintenance and residual feed consumption as estimated energy intake minus energy requirements as estimated by the National Research Council. Heritabilities for Herefords alone and total data, respectively, were estimated to be 0.02 and 0.11 for cow's daily ME intake (MEI), 0.26 and 0.26 for daily milk yield (DMY), 0.45 and 0.33 for milk fat percentage (MFP), 0.29 and 0.40 for metabolic body weight (MBW), 0.21 and 0.10 for calf weaning weight as a proportion of cow weight at weaning (PPW), 0.18 and 0.11 for feed efficiency for milk (FE), and 0.23 and 0.03 for residual feed consumption (RFC). Genetic correlations of output (DMY) and input (MEI) were 0.31 for Hereford and 0.75 for the total data. Genetic correlations of RFC with both output (DMY) and input (MEI) were low. Genetically, PPW was positively associated with FE and DMY and negatively associated with MBW. Key words: Genetic parameters, feed efficiency, lactation, beef cow


2012 ◽  
Vol 91 (5) ◽  
pp. 1065-1073 ◽  
Author(s):  
B. Basso ◽  
A. Bordas ◽  
F. Dubos ◽  
P. Morganx ◽  
C. Marie-Etancelin

Sign in / Sign up

Export Citation Format

Share Document