CALCULATION OF SEISMIC EFFECTS IN THE SPECIALIZED PROGRAMS OF NERA AND EERA

2017 ◽  
pp. 54-62
Author(s):  
M. D. Kaurkin ◽  
V. V. Romanov
Keyword(s):  
2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Piotr Adam Bońkowski ◽  
Juliusz Kuś ◽  
Zbigniew Zembaty

AbstractRecent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.


1992 ◽  
Vol 42 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Y. Chen ◽  
T. Krauthammer

Geophysics ◽  
1970 ◽  
Vol 35 (3) ◽  
pp. 419-435 ◽  
Author(s):  
M. Lavergne

Theoretical and experimental investigations of the seismic effects of underwater explosions of dynamite charges are described. We investigate the acoustic efficiency in a broad frequency band and in the seismic frequency band, the partition of energy between the shock wave and bubble pulses, the seismic effects of cavitation due to ghost reflection at the air‐water interface, and the damage caused to marine life. Results concerning the variation of the seismic efficiency with shot conditions are given: the conclusion is that the seismic efficiency of charges of the order of 100 gm can be considerably increased by dividing the charges and by shooting at depth. Experiments show that two or three properly spaced 50 gm charges of dynamite, shot at a depth of about 12 m, give the same result as a single charge of about 5 to 15 kg shot at a depth of 1 m. CDP marine sections comparing caged charge shooting with conventional shooting in the same area are shown.


1978 ◽  
Vol 50 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Peter Gergely ◽  
Richard N. White

Sign in / Sign up

Export Citation Format

Share Document