natural earthquakes
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 37)

H-INDEX

12
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 336
Author(s):  
Stanisław Lasocki ◽  
Łukasz Rudziński ◽  
Antek K. Tokarski ◽  
Beata Orlecka-Sikora

Hydrofracturing, used for shale gas exploitation, may induce felt, even damaging earthquakes. On 15 June 2019, an Mw2.8 earthquake occurred, spatially correlated with the location of earlier exploratory hydrofracturing operations for shale gas in Wysin in Poland. However, this earthquake was atypical. Hydrofracturing-triggered seismicity mainly occurs during stimulation; occasionally, it continues a few months after completion of the stimulation. In Wysin, there were only two weaker events during two-month hydrofracturing and then 35 months of seismic silence until the mentioned earthquake occurred. The Wysin site is in Gdańsk Pomerania broader region, located on the very weakly seismically active Precambrian Platform. The historical documents, covering 1000 years, report no natural earthquakes in Gdańsk Pomerania. We conclude, therefore, that despite the never observed before that long lag time after stimulation, the Mw2.8 earthquake was triggered by hydrofracturing. It is possible that its unusually late occurrence in relation to the time of its triggering technological activity was caused by changes in stresses due to time-dependent deformation of reservoir shales. The Wysin earthquake determines a new time horizon for the effect of HF on the stress state, which can lead to triggering earthquakes. Time-dependent deformation and its induced stress changes should be considered in shall gas reservoir exploitation plans.


Author(s):  
Moira L. Pyle ◽  
William R. Walter

Abstract High-frequency (∼> 2 Hz) seismic P/S amplitude ratios are well-established as a discriminant to distinguish between natural earthquakes and underground explosions at regional distances (∼200–1500 km). As research shifts toward identifying lower-yield events, work has begun to investigate the potential of this discriminant for use at local distances (<200 km), in which initial results raise questions about its effectiveness. Here, we utilize data from several chemical explosion experiment series at the Nevada National Security Site in southern Nevada in the United States to study explosion Pg/Lg ratios across the range of local to regional distances. The experiments are conducted over differing emplacement conditions, with contrasting geologies and a variety of yields and depths of burial, including surface explosions. We first establish the similarities of Pg/Lg ratios from chemical explosions to those from historic nuclear tests and conclude that, as previous data have suggested, chemical explosion ratios are good proxies for nuclear tests. We then examine Pg/Lg ratios from the new experiment series as functions of distance, yield, depth of burial, and scaled depth of burial (SDOB). At far-local and regional distances, we observe consistently higher ratios from hard-rock explosions compared to ones in a weaker dry alluvium medium, consistent with prior regional distance results. No other trends with yield, depth of burial, or SDOB are strongly evident. Scatter in the observed ratios is very high, particularly at the shortest event-to-station distances, suggesting that small-scale path effects play a significant role. On average, the local distance explosion Pg/Lg ratios show remarkable consistency across all the variations in emplacement. Explosion source models will need to reproduce these results.


2021 ◽  
Vol 228 (1) ◽  
pp. 538-550
Author(s):  
Yishan Song ◽  
Lian-Feng Zhao ◽  
Xiao-Bi Xie ◽  
Xiao Ma ◽  
Guilin Du ◽  
...  

SUMMARY On 2019 March 21, an explosion accidentally occurred at a chemical plant in Xiangshui, Yancheng City, Jiangsu Province, China. Using broad-band digital seismic data from East China, South Korea and Japan, we investigate properties of the Xiangshui explosion as well as two nearby chemical explosions and four nearby natural earthquakes in Jiangsu Province, East China. From Lg and Rayleigh waves recorded by regional networks, both body wave magnitude mb (Lg) and surface wave magnitude Ms (Rayleigh) are calculated for these events. The magnitudes of the Xiangshui explosion are mb (Lg) = 3.39 ± 0.24 and Ms = 1.95 ± 0.27, respectively. Both the empirical magnitude–yield relation for buried explosion and empirical yield–crater dimension relation for open-pit explosion are adopted for investigating the explosive yield. The result from the yield–crater dimension relation is approximately 492 ton, which is consistent with the ground truth and considerably larger than that from the buried source model. This also reveals that, for Xiangshui explosion, the explosion to seismic energy conversion rate is approximately one-third compared to a similar sized fully confined explosion. By comparing the body wave and surface wave magnitudes from explosions and nearby earthquakes, we find that the mb:Ms discriminant calculated at regional distances cannot properly distinguish explosions from natural earthquakes. However, the P/S spectral ratios Pg/Lg, Pn/Lg and Pn/Sn from the same data set can be good discriminants for identifying explosions from earthquakes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Futoshi Yamashita ◽  
Eiichi Fukuyama ◽  
Shiqing Xu ◽  
Hironori Kawakata ◽  
Kazuo Mizoguchi ◽  
...  

AbstractThe preparation process of natural earthquakes is still difficult to quantify and remains a subject of debate even with modern observational techniques. Here, we show that foreshock activity can shed light on understanding the earthquake preparation process based on results of meter-scale rock friction experiments. Experiments were conducted under two different fault surface conditions before each run: less heterogeneous fault without pre-existing gouge and more heterogeneous fault with pre-existing gouge. The results show that fewer foreshocks occurred along the less heterogeneous fault and were driven by preslip; in contrast, more foreshocks with a lower b value occurred along the more heterogeneous fault and showed features of cascade-up. We suggest that the fault surface condition and the stress redistribution caused by the ongoing fault slip mode control the earthquake preparation process, including the behavior of foreshock activity. Our findings imply that foreshock activity can be a key indicator for probing the fault conditions at present and in the future, and therefore useful for assessing earthquake hazard.


Author(s):  
Laura Gulia ◽  
Paolo Gasperini

Abstract Artifacts often affect seismic catalogs. Among them, the presence of man-made contaminations such as quarry blasts and explosions is a well-known problem. Using a contaminated dataset reduces the statistical significance of results and can lead to erroneous conclusions, thus the removal of such nonnatural events should be the first step for a data analyst. Blasts misclassified as natural earthquakes, indeed, may artificially alter the seismicity rates and then the b-value of the Gutenberg and Richter relationship, an essential ingredient of several forecasting models. At present, datasets collect useful information beyond the parameters to locate the earthquakes in space and time, allowing the users to discriminate between natural and nonnatural events. However, selecting them from webservices queries is neither easy nor clear, and part of such supplementary but fundamental information can be lost during downloading. As a consequence, most of statistical seismologists ignore the presence in seismic catalog of explosions and quarry blasts and assume that they were not located by seismic networks or in case they were eliminated. We here show the example of the Italian Seismological Instrumental and Parametric Database. What happens when artificial seismicity is mixed with natural one?


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Houdoux ◽  
Axelle Amon ◽  
David Marsan ◽  
Jérôme Weiss ◽  
Jérôme Crassous

AbstractMemory effects in seismology—such as the occurrence of aftershock sequences—are implicitly assumed to be governed by the time since the main event. However, experiments are yet to identify if memory effects are structural or time-dependent mechanisms. Here, we use laser interferometry to examine the fluctuations of deformation which naturally emerge along an experimental shear fault within a compressed frictional granular medium. We find that deformation occurs as a succession of localized micro-slips distributed along the fault. The associated distributions of released seismic moments, as well as the memory effects in strain fluctuations and the time correlations between successive events, follow exactly the empirical laws of natural earthquakes. We use a methodology initially developed in seismology to reveal at the laboratory scale the underlying causal structure of this behavior and identify the triggering kernel. We propose that strain, not time, controls the memory effects in our fault analog.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Piotr Adam Bońkowski ◽  
Juliusz Kuś ◽  
Zbigniew Zembaty

AbstractRecent research in engineering seismology demonstrated that in addition to three translational seismic excitations along x, y and z axes, one should also consider rotational components about these axes when calculating design seismic loads for structures. The objective of this paper is to present the results of a seismic response numerical analysis of a mine tower (also called in the literature a headframe or a pit frame). These structures are used in deep mining on the ground surface to hoist output (e.g. copper ore or coal). The mine towers belong to the tall, slender structures, for which rocking excitations may be important. In the numerical example, a typical steel headframe 64 m high is analysed under two records of simultaneous rocking and horizontal seismic action of an induced mine shock and a natural earthquake. As a result, a complicated interaction of rocking seismic effects with horizontal excitations is observed. The contribution of the rocking component may sometimes reduce the overall seismic response, but in most cases, it substantially increases the seismic response of the analysed headframe. It is concluded that in the analysed case of the 64 m mining tower, the seismic response, including the rocking ground motion effects, may increase up to 31% (for natural earthquake ground motion) or even up to 135% (for mining-induced, rockburst seismic effects). This means that not only in the case of the design of very tall buildings or industrial chimneys but also for specific yet very common structures like mine towers, including the rotational seismic effects may play an important role.


Author(s):  
Clara Duverger ◽  
Gilles Mazet-Roux ◽  
Laurent Bollinger ◽  
Aurélie Guilhem Trilla ◽  
Amaury Vallage ◽  
...  

We summarize ten years of the French seismicity recorded by the Geophysical and Detection Laboratory (LDG) of the French Alternative Energies and Atomic Energy Commission (CEA) network from 2010 to 2019. During this period, 25,279 natural earthquakes were detected by the LDG and located within metropolitan France and its immediate vicinity. This seismicity contributes to more than 47% of the natural earthquakes instrumentally recorded since 1962 (mainly due to the improvement of network capacity), and includes about 28% of the most significant earthquakes with a magnitude ML ≥ 4.0. Recent seismic events therefore significantly expand the available national catalogues. The spatial distribution of 2010-2019 earthquakes is broadly similar to the previous instrumental pattern of the seismicity, with most of the seismic activity concentrated in the French Alps, the Pyrenees, the Brittany, the upper Rhine Graben and the Central Massif. A large part of the seismic activity is related to the occurrence of individual events. The largest earthquakes of the last ten years include the November 11, 2019 Le Teil earthquake with ML 5.4 and maximal epicentral intensities VII to VIII, which occurred in the Rhone valley; the April 28, 2016 La Rochelle earthquake with ML 5.2 and epicentral intensity V, which occurred at the southernmost extremity of the Armorican Massif in the vicinity of the Oléron island; and the April 7, 2014 Barcelonnette earthquake with ML 5.1 and epicentral intensity VII, which occurred in the Ubaye valley in the Alps. In 2019, two other moderate earthquakes of ML 5.1 and ML 4.9 stroke the western part of France, in Charente-Maritime and Maine-et-Loire department, respectively. The recent moderate earthquake occurrences and the large number of small earthquakes recorded give both the potential to revise some regional historical events and to determine more robust frequency-magnitude distributions, which are critical for seismic hazard assessment but complex due to low seismicity rates in France. The LDG seismic network installed since the early 1960s also allows a better characterization of the temporal structure of seismicity, partly diffused and in the form of mainshock-aftershocks sequences or transient swarms. These aspects are important in order to lower the uncertainties associated to seismogenic sources and improve the models in seismic hazard assessment for metropolitan France.


2021 ◽  
Author(s):  
Federica Paglialunga ◽  
François Passelègue ◽  
Fabian Barras ◽  
Mathias Lebihain ◽  
Nicolas Brantut ◽  
...  

<p>Potential energy stored during the inter-seismic period by tectonic loading around faults can be released through earthquakes as radiated energy, heat and rupture energy. The latter is of first importance, since it controls both the nucleation and the propagation of the seismic rupture. On one side, the rupture energy estimated for natural earthquakes (also called Breakdown work) ranges between 1 J/m<sup>2</sup> and tens of MJ/m<sup>2</sup> for the largest events, and shows a clear slip dependence. On the other side, recent experimental studies highlighted that at the scale of the laboratory, rupture energy is a material property (energy required to break the fault interface), limited by an upper bound value corresponding to the rupture energy of the intact material (1 to 10 kJ/m<sup>2</sup>), independently of the size of the event, i.e. of the seismic slip.</p><p>To reconcile these contradictory observations, we performed stick-slip experiments, as an analog for earthquakes, in a bi-axial shear configuration. We analyzed the fault weakening during frictional rupture by accessing to the on-fault (1 mm away) stress-slip curve through strain-gauge array. We first estimated rupture energy by comparing the experimental strain with the theoretical predictions from both Linear Elastic Fracture Mechanics (LEFM) and the Cohesive Zone Model (CZM). Secondly, we compared these values to the breakdown work obtained from the integration of the stress-slip curve. Our results showed that, at the scale of our experiments, fault weakening is divided into two stages; the first one, corresponding to an energy of few J/m<sup>2</sup>, coherent with the estimated rupture energy (by LEFM and CZM), and a long-tailed weakening corresponding to a larger energy not observable at the rupture tip.</p><p>Using a theoretical analysis and numerical simulations, we demonstrated that only the first weakening stage controls the nucleation and the dynamics of the rupture tip. The breakdown work induced by the long-tailed weakening can enhance slip during rupture propagation and can allow the rupture to overcome stress heterogeneity along the fault. Additionally, we showed that at a large scale of observation the dynamics of the rupture tip can become controlled by the breakdown work induced by the long-tailed weakening, leading to a larger stress singularity at the rupture tip which becomes less sensitive to stress perturbations. We suggest that while the onset of frictional motions is related to fracture, natural earthquakes propagation is driven by frictional weakening with increasing slip, explaining the large values of estimated breakdown work for natural earthquakes, as well as the scale dependence in the dynamics of rupture.</p>


Sign in / Sign up

Export Citation Format

Share Document