scholarly journals Immunocytochemical approach for surface layer proteins of freeze-substituted Tannerella forsythensis by energy-filtering transmission electron microscopy

2008 ◽  
Vol 85 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Keiichi MORIGUCHI ◽  
Takamichi JOGAHARA ◽  
Takayuki KURIHARA ◽  
Jun IWAMI ◽  
Naoya HIGUCHI ◽  
...  
Author(s):  
L. D. Peachey ◽  
J. P. Heath ◽  
G. Lamprecht

Biological specimens of cells and tissues generally are considerably thicker than ideal for high resolution transmission electron microscopy. Actual image resolution achieved is limited by chromatic aberration in the image forming electron lenses combined with significant energy loss in the electron beam due to inelastic scattering in the specimen. Increased accelerating voltages (HVEM, IVEM) have been used to reduce the adverse effects of chromatic aberration by decreasing the electron scattering cross-section of the elements in the specimen and by increasing the incident electron energy.


2011 ◽  
Vol 17 (S2) ◽  
pp. 790-791
Author(s):  
M Watanabe ◽  
F Allen

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2012 ◽  
Vol 48 (9) ◽  
pp. 322-330 ◽  
Author(s):  
Shin HORIUTI ◽  
Takeshi HANADA ◽  
Takayuki MIYAMAE ◽  
Tadae YAMANAKA ◽  
Kogoro OOSUMI ◽  
...  

2004 ◽  
Vol 10 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Masaki Takeguchi ◽  
Kazutaka Mitsuishi ◽  
Miyoko Tanaka ◽  
Kazuo Furuya

About 1 monolayer of palladium was deposited onto a silicon (111) 7 × 7 surface at a temperature of about 550 K inside an ultrahigh vacuum transmission electron microscope, resulting in formation of Pd2Si nanoislands and a 1 × 1 surface layer. Pd clusters created from an excess of Pd atoms on the 1 × 1 surface layer were directly observed byin situplan view high-resolution transmission electron microscopy. When an objective aperture was introduced so that electron diffractions less than 0.20 nm were filtered out, the lattice structure of the 1 × 1 surface with 0.33 nm spacing and the Pd clusters with a trimer shape were visualized. It was found that image contrast of the 1 × 1 lattice on the specific height terraces disappeared, and thereby an atomic structure of the Pd clusters was clearly observed. The appearance and disappearance of the 1 × 1 lattice was explained by the effect of the kinematical diffraction. It was identified that a Pd cluster was composed of three Pd atoms without a centered Si atom, which is consistent with the model proposed previously. The feature of the Pd clusters stuck at the surface step was also described.


Sign in / Sign up

Export Citation Format

Share Document