Direct UHV-TEM Observation of Palladium Clusters on a Silicon Surface

2004 ◽  
Vol 10 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Masaki Takeguchi ◽  
Kazutaka Mitsuishi ◽  
Miyoko Tanaka ◽  
Kazuo Furuya

About 1 monolayer of palladium was deposited onto a silicon (111) 7 × 7 surface at a temperature of about 550 K inside an ultrahigh vacuum transmission electron microscope, resulting in formation of Pd2Si nanoislands and a 1 × 1 surface layer. Pd clusters created from an excess of Pd atoms on the 1 × 1 surface layer were directly observed byin situplan view high-resolution transmission electron microscopy. When an objective aperture was introduced so that electron diffractions less than 0.20 nm were filtered out, the lattice structure of the 1 × 1 surface with 0.33 nm spacing and the Pd clusters with a trimer shape were visualized. It was found that image contrast of the 1 × 1 lattice on the specific height terraces disappeared, and thereby an atomic structure of the Pd clusters was clearly observed. The appearance and disappearance of the 1 × 1 lattice was explained by the effect of the kinematical diffraction. It was identified that a Pd cluster was composed of three Pd atoms without a centered Si atom, which is consistent with the model proposed previously. The feature of the Pd clusters stuck at the surface step was also described.

2005 ◽  
Vol 20 (7) ◽  
pp. 1878-1887 ◽  
Author(s):  
Takanori Kiguchi ◽  
Naoki Wakiya ◽  
Kazuo Shinozaki ◽  
Nobuyasu Mizutani

The crystallization process of yttria-stabilized zirconia (YSZ) gate dielectrics deposited on p-Si (001) and SiOx/p-Si(001) substrates and the growth process of SiOx has been investigated directly using high-temperature in situ cross-sectional view transmission electron microscopy (TEM) method and high-temperature plan-view in-situ TEM method. The YSZ layer is crystallized by the nucleation and growth mechanism at temperatures greater than 573 K. Nucleation originates from the film surface. Nucleation occurs randomly in the YSZ layer. Subsequently, the crystallized YSZ area strains the Si surface. Finally, it grows in the in-plane direction with the strain, whereas, if a SiOx layer of 1.4 nm exists, it absorbs the crystallization strain. Thereby, an ultrathin SiOx layer can relax the strain generated in the Si substrate in thin film crystallization process.


1990 ◽  
Vol 198 ◽  
Author(s):  
Hyeongtag Jeon ◽  
J. W. Honeycutt ◽  
C. A. Sukow ◽  
T. P. Humphreys ◽  
R. J. Nemanich ◽  
...  

ABSTRACTEpitaxial TiSi2 films have been grown by molecular beam epitaxy (MBE) on atomically clean Si(111)-orientated substrates. The growth procedure involves the ambient temperature deposition of Ti films of 50Å thickness and annealing to 800°C. In situ low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) techniques have been used to monitor the TiSi2 formation process. The epitaxial films have been identified as the C49 metastable phase by both Raman spectroscopy and electron diffraction. Plan view transmission electron microscopy shows three different connected island morphologies. The individual island structures are single crystal and are grown epitaxially with different crystallographic orientations. The orientational relationship of the largest islands is given by [3 1 1] C49 TiSi2//[112]Si and (130) C49 TiSi2//(l1 1)Si. High resolution transmission electron microscopy (HRTEM) cross-section shows a coherent interface extending over several hundred angstroms.


1998 ◽  
Vol 4 (3) ◽  
pp. 248-253 ◽  
Author(s):  
M. Yeadon ◽  
J.C. Yang ◽  
R.S. Averback ◽  
J.M. Gibson

We discuss various techniques for the characterization of supported nanoparticles by in situ plan-view transmission electron microscopy. In particular, we discuss here mechanisms of image contrast formation by particles undergoing reorientation on the surface of a single crystal substrate. We consider reorientation by a variety of mechanisms including rotation, sintering and grain growth, and surface diffusion. Experimental observations are presented and the data compared with theoretical predictions.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document