scholarly journals Radiation force fields formed by a standing surface acoustic wave in a viscous liquid layer lying on an elastic half-space

Author(s):  
Denis Alexandrovich Zharkov ◽  
Vladimir Gusev
Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4533 ◽  
Author(s):  
Tao Wang ◽  
Ryan Murphy ◽  
Jing Wang ◽  
Shyam S. Mohapatra ◽  
Subhra Mohapatra ◽  
...  

Surface acoustic wave sensors have the advantage of fast response, low-cost, and wireless interfacing capability and they have been used in the medical analysis, material characterization, and other application fields that immerse the device under a liquid environment. The theoretical analysis of the single guided layer shear horizontal acoustic wave based on the perturbation theory has seen developments that span the past 20 years. However, multiple guided layer systems under a liquid environment have not been thoroughly analyzed by existing theoretical models. A dispersion equation previously derived from a system of three rigidly coupled elastic mass layers is extended and developed in this study with multiple guided layers to analyze how the liquid layer’s properties affect the device’s sensitivity. The combination of the multiple layers to optimize the sensitivity of an acoustic wave sensor is investigated in this study. The Maxwell model of viscoelasticity is applied to represent the liquid layer. A thorough analysis of the complex velocity due to the variations of the liquid layer’s properties and thickness is derived and discussed to optimize multilayer Surface acoustic wave (SAW) sensor design. Numerical simulation of the sensitivity with a liquid layer on top of two guided layers is investigated in this study as well. The parametric investigation was conducted by varying the thicknesses for the liquid layer and the guided layers. The effect of the liquid layer viscosity on the sensitivity of the design is also presented in this study. The two guided layer device can achieve higher sensitivity than the single guided layer counterpart in a liquid environment by optimizing the second guided layer thickness. This perturbation analysis is valuable for Love wave sensor optimization to detect the liquid biological samples and analytes.


The effect of a liquid layer overlying a solid half-space excited by harmonically varying stresses on the surface of an embedded spherical cavity is examined. The Stoneley waves along the liquid/solid interface are studied in some detail. The results are then extended to the case of an exponential shock.


2011 ◽  
Vol 216 ◽  
pp. 25-28
Author(s):  
Wen Bin Sun

Standing surface acoustic wave (SSAW) technology combined with microtechnology opens up new areas for the development of advanced microparticle and cell separating microfluidic system. A novel SSAW sensor made of the orthotropic piezoelectric composite material (OPCM) is proposed and described. A SSAW field with target wavelength can be generated by this technology and with this new sensor. The wavelength of SSAW generated by this sensor can vary the range from several to a few hundred micrometers. The acoustic radiation force (ARF) generated by the SSAW field can be used to manipulate different dimensional particles.


Sign in / Sign up

Export Citation Format

Share Document