scholarly journals Non-local box complexity and secure function evaluation

2011 ◽  
Vol 11 (1&2) ◽  
pp. 40-69
Author(s):  
Marc Kaplan ◽  
Sophie Laplante ◽  
Iordanis Kerenidis ◽  
J\'er\'emie Roland

A non-local box is an abstract device into which Alice and Bob input bits $x$ and $y$ respectively and receive outputs $a$ and $b$, where $a,b$ are uniformly distributed and $a \oplus b = x \wedge y$. Such boxes have been central to the study of quantum or generalized non-locality, as well as the simulation of non-signaling distributions. In this paper, we start by studying how many non-local boxes Alice and Bob need in order to compute a Boolean function $f$. We provide tight upper and lower bounds in terms of the communication complexity of the function both in the deterministic and randomized case. We show that non-local box complexity has interesting applications to classical cryptography, in particular to secure function evaluation, and study the question posed by Beimel and Malkin \cite{BM} of how many Oblivious Transfer calls Alice and Bob need in order to securely compute a function $f$. We show that this question is related to the non-local box complexity of the function and conclude by greatly improving their bounds. Finally, another consequence of our results is that traceless two-outcome measurements on maximally entangled states can be simulated with 3 \nlbs, while no finite bound was previously known.

2007 ◽  
Vol 7 (1&2) ◽  
pp. 157-170 ◽  
Author(s):  
A.A. Methot ◽  
V. Scarani

Ever since the work of Bell, it has been known that entangled quantum states can produce non-local correlations between the outcomes of separate measurements. However, for almost forty years, it has been assumed that the most non-local states would be the maximally entangled ones. Surprisingly it is not the case: non-maximally entangled states are generally more non-local than maximally entangled states for all the measures of non-locality proposed to date: Bell inequalities, the Kullback-Leibler distance, entanglement simulation with communication or with non-local boxes, the detection loophole and efficiency of cryptography. In fact, one can even find simple examples in low dimensions, confirming that it is not an artefact of a specifically constructed Hilbert space or topology. This anomaly shows that entanglement and non-locality are not only different concepts, but also truly different resources. We review the present knowledge on this anomaly, point out that Hardy's theorem has the same feature, and discuss the perspectives opened by these discoveries.


2015 ◽  
Vol 0 (0) ◽  
Author(s):  
Victoria Knopova ◽  
Alexei Kulik

AbstractIn this paper, we show that a non-local operator of certain type extends to the generator of a strong Markov process, admitting the transition probability density. For this transition probability density we construct the intrinsic upper and lower bounds, and prove some smoothness properties. Some examples are provided.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 104 ◽  
Author(s):  
Alberto Montina ◽  
Stefan Wolf

In view of the importance of quantum non-locality in cryptography, quantum computation, and communication complexity, it is crucial to decide whether a given correlation exhibits non-locality or not. As proved by Pitowski, this problem is NP-complete, and is thus computationally intractable unless NP is equal to P. In this paper, we first prove that the Euclidean distance of given correlations from the local polytope can be computed in polynomial time with arbitrary fixed error, granted the access to a certain oracle; namely, given a fixed error, we derive two upper bounds on the running time. The first bound is linear in the number of measurements. The second bound scales with the number of measurements to the sixth power. The former holds only for a very high number of measurements, and is never observed in the performed numerical tests. We, then, introduce a simple algorithm for simulating the oracle. In all of the considered numerical tests, the simulation of the oracle contributes with a multiplicative factor to the overall running time and, thus, does not affect the sixth-power law of the oracle-assisted algorithm.


1998 ◽  
Vol 7 (4) ◽  
pp. 451-463 ◽  
Author(s):  
PETR SAVICKÝ

For any Boolean function f, let L(f) be its formula size complexity in the basis {∧, [oplus ] 1}. For every n and every k[les ]n/2, we describe a probabilistic distribution on formulas in the basis {∧, [oplus ] 1} in some given set of n variables and of size at most [lscr ](k)=4k. Let pn,k(f) be the probability that the formula chosen from the distribution computes the function f. For every function f with L(f)[les ][lscr ](k)α, where α=log4(3/2), we have pn,k(f)>0. Moreover, for every function f, if pn,k(f)>0, thenformula herewhere c>1 is an absolute constant. Although the upper and lower bounds are exponentially small in [lscr ](k), they are quasi-polynomially related whenever [lscr ](k)[ges ]lnΩ(1)n. The construction is a step towards developing a model appropriate for investigation of the properties of a typical (random) Boolean function of some given complexity.


Author(s):  
Richard Healey

Quantum entanglement is popularly believed to give rise to spooky action at a distance of a kind that Einstein decisively rejected. Indeed, important recent experiments on systems assigned entangled states have been claimed to refute Einstein by exhibiting such spooky action. After reviewing two considerations in favor of this view I argue that quantum theory can be used to explain puzzling correlations correctly predicted by assignment of entangled quantum states with no such instantaneous action at a distance. We owe both considerations in favor of the view to arguments of John Bell. I present simplified forms of these arguments as well as a game that provides insight into the situation. The argument I give in response turns on a prescriptive view of quantum states that differs both from Dirac’s (as stated in Chapter 2) and Einstein’s.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Sign in / Sign up

Export Citation Format

Share Document