scholarly journals Access tetracoordinate boron-doped polycyclic aromatic hydrocarbons with aggregation-induced emission under mild conditions

Author(s):  
Long Jiang ◽  
Dehui Tan ◽  
Xiaobin Chen ◽  
Tinghao Ma ◽  
Baoliang Zhang ◽  
...  

The boron-doped polycyclic aromatic hydrocarbons (PAHs) have attracted ongoing attention in the field of optoelectronic materials due to their unique optical and redox properties. To investigate the effect of tetracoordinate boron in PAHs bearing N-heterocycles (indole and carbazole), a facile approach to four-coordinate boron-doped PAHs was developed, which does not require elevated temperature and pre-synthesized functionalized boron reactants. Five tetracoordinate boron-doped PAHs (NBNN-1 – NBNN-5) were synthesized with different functional groups. Two of them (NBNN-1 and NBNN-2) could further undergo oxidative coupling reactions to form fused off-plane tetracoordinate boron-doped PAHs NBNN-1f and NBNN-2f. Compared to the three-coordinate boron-doped counterparts, the UV/Vis absorption and fluorescent emission are significantly red-shift. Unlike the distinct impact of coordination number of boron on optoelectronic properties, the difference of functional groups on the boron atom has negligible impact on their optical and electrochemical properties. The compounds NBNN-1f and NBNN-2f show aggregation-induced emission.

2020 ◽  
Vol 16 ◽  
pp. 530-536 ◽  
Author(s):  
Anping Luo ◽  
Min Zhang ◽  
Zhangyi Fu ◽  
Jingbo Lan ◽  
Di Wu ◽  
...  

The regioselective C–H arylation of substituted polycyclic aromatic hydrocarbons (PAHs) is a desired but challenging task. A copper-catalyzed C7–H arylation of 1-naphthamides has been developed by using aryliodonium salts as arylating reagents. This protocol does not need to use precious metal catalysts and tolerates wide variety of functional groups. Under standard conditions, the remote C–H arylation of other PAHs including phenanthrene-9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide has also accomplished, which provides an opportunity for the development of diverse organic optoelectronic materials.


2020 ◽  
Author(s):  
Anping Luo ◽  
Min Zhang ◽  
Zhangyi Fu ◽  
Jingbo Lan ◽  
Di Wu ◽  
...  

The regioselective C–H arylation of substituted polycyclic aromatic hydrocarbons (PAHs) is a desired but challenging task. Herein, a copper-catalyzed C7–H arylation of 1-naphthamides has been developed by using aryliodonium salts as arylating reagents. This protocol does not need to use precious metal catalysts and can tolerate wide functional groups. Under standard conditions, the remote C–H arylation of other PAHs including phenanthrene-9-carboxamide, pyrene-1-carboxamide and fluoranthene-3-carboxamide has also accomplished, which provides an opportunity for the development of diverse organic optoelectronic materials.


2020 ◽  
Author(s):  
Jin‐Jiang Zhang ◽  
Man‐Chung Tang ◽  
Yubin Fu ◽  
Kam‐Hung Low ◽  
Ji Ma ◽  
...  

2015 ◽  
Vol 17 (24) ◽  
pp. 6158-6161 ◽  
Author(s):  
Fumiya Miyamoto ◽  
Soichiro Nakatsuka ◽  
Keitaro Yamada ◽  
Ken-ichi Nakayama ◽  
Takuji Hatakeyama

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1040 ◽  
Author(s):  
Edina Reizer ◽  
Imre Csizmadia ◽  
Árpád Palotás ◽  
Béla Viskolcz ◽  
Béla Fiser

The formation of polycyclic aromatic hydrocarbons (PAHs) is a strong global concern due to their harmful effects. To help the reduction of their emissions, a crucial understanding of their formation and a deep exploration of their growth mechanism is required. In the present work, the formation of benzo(a)pyrene was investigated computationally employing chrysene and benz(a)anthracene as starting materials. It was assumed a type of methyl addition/cyclization (MAC) was the valid growth mechanism in this case. Consequently, the reactions implied addition reactions, ring closures, hydrogen abstractions and intramolecular hydrogen shifts. These steps of the mechanism were computed to explore benzo(a)pyene formation. The corresponding energies of the chemical species were determined via hybrid density funcional theory (DFT), B3LYP/6-31+G(d,p) and M06-2X/6-311++G(d,p). Results showed that the two reaction routes had very similar trends energetically, the difference between the energy levels of the corresponding molecules was just 6.13 kJ/mol on average. The most stable structure was obtained in the benzo(a)anthracene pathway.


2017 ◽  
Vol 129 (20) ◽  
pp. 5680-5684 ◽  
Author(s):  
Alexandra John ◽  
Michael Bolte ◽  
Hans-Wolfram Lerner ◽  
Matthias Wagner

2022 ◽  
Author(s):  
Hiroki Narita ◽  
Heekyoung Choi ◽  
Masato Ito ◽  
Naoki Ando ◽  
Soichiro Ogi ◽  
...  

Planarized triarylboranes are attracting increasing attention not only as models of boron-doped graphenes, but also as promising materials for organic optoelectronics. In particular, polycyclic aromatic hydrocarbon (PAH) skeletons with embedded...


Sign in / Sign up

Export Citation Format

Share Document