scholarly journals Calculation of the Tafel slope and reaction order of the oxygen evolution reaction between pH 12 and pH 14 for the adsorbate mechanism

Author(s):  
Denis Antipin ◽  
Marcel Risch

Despite numerous experimental and theoretical studies devoted to the oxygen evolution reaction, the mechanism of the OER on transition metal oxides remains controversial. This is in part owed to the ambiguity of electrochemical parameters of the mechanism such as the Tafel slope and reaction orders. We took the most commonly assumed adsorbate mechanism and calculated the Tafel slopes and reaction orders with respect to pH based on microkinetic analysis. We demonstrate that number of possible Tafel slopes strongly depends on a number of preceding steps and surface coverage. Furthermore, the Tafel slope becomes pH dependent when the coverage of intermediates changes with pH. These insights complicate the identification of a rate-limiting step by a single Tafel slope at a single pH. Yet, simulations of reaction orders complementary to Tafel slopes can solve some ambiguities to distinguish between possible rate-limiting steps. The most insightful information can be obtained from the low overpotential region of the Tafel plot. The simulations in this work provide clear guidelines to experimentalists for the identification of the limiting steps in the adsorbate mechanism using the observed values of the Tafel slope and reaction order in pH-dependent studies.

2021 ◽  
Vol 5 (6) ◽  
pp. 1801-1808
Author(s):  
Jie Yu ◽  
Tao Zhang ◽  
Changchang Xing ◽  
Xuejiao Li ◽  
Xinyang Li ◽  
...  

NiS2/Fe-P nanospheres were developed as an efficient oxygen evolution reaction electrocatalyst with a low overpotential (218 mV @ 10 mA cm−2 and 306 mV @ 800 mA cm−2) and Tafel slope (47.5 mV dec−1).


2018 ◽  
Vol 3 (12) ◽  
pp. 2884-2890 ◽  
Author(s):  
Chunzhen Yang ◽  
Maria Batuk ◽  
Quentin Jacquet ◽  
Gwenaëlle Rousse ◽  
Wei Yin ◽  
...  

2021 ◽  
Author(s):  
Sihang Liu ◽  
Nitish Govindarajan ◽  
Hector Prats ◽  
Karen Chan

Kolbe electrolysis has been proposed an efficient electrooxidation process to synthesize (un)symmetrical dimers from biomass-based carboxylic acids. However, the reaction mechanism of Kolbe electrolysis remains controversial. In this work, we develop a DFT- based microkinetic model to study the reaction mechanism of Kolbe electrolysis of acetic acid (CH3COOH) on both pristine and partially oxidized Pt anodes. We show that the shift in the rate-determining step of oxygen evolution reaction (OER) on Pt(111)@α-PtO2 surface from OH* formation to H2O adsorption gives rise to the large Tafel slopes, i.e., the inflection zones, observed at high anodic potentials in experiments on Pt anodes. The activity passivation as a result of the inflection zone is further exacerbated in the presence of Kolbe species (i.e., CH3COO* and CH3*). Our simulations find the CH3COO* decarboxylation and CH3* dimerization steps determine the activity of Kolbe reaction during inflection zone. In contrast to the Pt(111)@α-PtO2 surface, Pt(111) shows no activity towards Kolbe products as the CH3COO* decarboxylation step is limiting throughout the considered potential range. This work resolves major controversies in the mechanistic analyses of Kolbe electrolysis on Pt anodes: the origin of the inflection zone, and the identity of the rate limiting step.


2019 ◽  
Vol 7 (45) ◽  
pp. 25865-25877 ◽  
Author(s):  
Aliki Moysiadou ◽  
Xile Hu

Metal oxides undergo compositional changes due to a dynamic exchange of metal ions with the electrolyte solutions during the oxygen evolution reaction.


Nanoscale ◽  
2020 ◽  
Vol 12 (40) ◽  
pp. 20719-20725
Author(s):  
Kai Rong ◽  
Jiale Wei ◽  
Liang Huang ◽  
Youxing Fang ◽  
Shaojun Dong

A direct DES calcining method is developed to prepare low-dimensional and highly active transition metal oxides (TMOs) for electrochemical oxygen evolution reaction.


2017 ◽  
Vol 1 (1) ◽  
pp. 207-216 ◽  
Author(s):  
Michelle P. Browne ◽  
Joana M. Vasconcelos ◽  
João Coelho ◽  
Maria O'Brien ◽  
Aurelie A. Rovetta ◽  
...  

Recent research trends have seen a rise in the interest in Transition Metal Oxides (TMO's) as catalysts for the Oxygen Evolution Reaction (OER).


2020 ◽  
Vol 13 (7) ◽  
pp. 2153-2166 ◽  
Author(s):  
Tobias Schuler ◽  
Taro Kimura ◽  
Thomas J. Schmidt ◽  
Felix N. Büchi

The reaction order of water and the electro-kinetic parameters are determined for the oxygen evolution reaction on iridium oxide.


Sign in / Sign up

Export Citation Format

Share Document