tafel slopes
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 25)

H-INDEX

21
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Pedro Delvasto ◽  
Héctor Rueda ◽  
Andrés Monsalve ◽  
Ronald Vargas ◽  
Sergio Blanco ◽  
...  

Abstract A micro-recycling approach was explored to produce catalytic metallic coatings for the hydrogen evolution reaction (HER). For this aim, discarded Ni-Cd batteries were employed as raw material. After dismantling the batteries, the active powder material, containing Cd and Ni compounds, was leached in a solution containing citric acid and hydrogen peroxide. The dissolved metals were electro-deposited on copper plates using a two electrodes cell at the following potentials (mV): -1900, -2000, and -2100 mV. The CdNi coating produced at -2000 mV, contained 92.6 % Cd and 7.4 % Ni. This coating was studied by cyclic voltammetry (CV) and potentiodynamic analysis in two different KOH solutions (0.1 M and 1.0 M). The CV analysis showed that the CdNi electrode was electrochemically stable in a wide operating voltage range (between oxygen evolution reaction and HER). Using an uncompensated resistance correction, the Tafel slopes for HER were obtained. The potentiodynamic analysis revealed that the synthesized CdNi electrode showed a catalytic activity for HER just 25.5 % smaller than the correspondent response of a standard pure Ni electrode. Our results serve as a proof of concept about the application of micro-recycling of spent batteries to produce sustainable electroactive catalytic materials for hydrogen production.


2021 ◽  
Author(s):  
Denis Antipin ◽  
Marcel Risch

Despite numerous experimental and theoretical studies devoted to the oxygen evolution reaction, the mechanism of the OER on transition metal oxides remains controversial. This is in part owed to the ambiguity of electrochemical parameters of the mechanism such as the Tafel slope and reaction orders. We took the most commonly assumed adsorbate mechanism and calculated the Tafel slopes and reaction orders with respect to pH based on microkinetic analysis. We demonstrate that number of possible Tafel slopes strongly depends on a number of preceding steps and surface coverage. Furthermore, the Tafel slope becomes pH dependent when the coverage of intermediates changes with pH. These insights complicate the identification of a rate-limiting step by a single Tafel slope at a single pH. Yet, simulations of reaction orders complementary to Tafel slopes can solve some ambiguities to distinguish between possible rate-limiting steps. The most insightful information can be obtained from the low overpotential region of the Tafel plot. The simulations in this work provide clear guidelines to experimentalists for the identification of the limiting steps in the adsorbate mechanism using the observed values of the Tafel slope and reaction order in pH-dependent studies.


Author(s):  
Shashi lalvani ◽  
Lei Kerr ◽  
Shamal Lalvani ◽  
Dominic Olaguera-Delogu

Abstract A careful evaluation of the earlier model (1-2) for electrochemical frequency modulation (EFM) involving two sinusoidal applied potentials for the determination of corrosion parameters shows an algebraic error. Although the missing term in the original derivation appears to be insignificant, it is found that errors involved in corrosion current determination, and especially in evaluation of the Tafel slopes can be very significant, which is of consequence because of the rising popularity of this technique. The magnitude of error is found to be a function of the inherent corrosion characteristics (anodic and cathodic Tafel slopes) of the corroding material as well as the applied peak potential of the modulation. A corrected model with detailed steps showing the appropriate math is presented. In addition, using the experimental data available in the literature, the errors involved in estimating the corrosion parameters by the earlier EFM model of Bosch et al (1-2) are evaluated. The corrected corrosion current and the Tafel slopes can be recovered from the incorrect model without the benefit of the harmonic currents, as shown in this paper.The analysis is also presented for the case of only one applied sinusoidal frequency modulation, which offers several advantages over the multiple frequency modulation.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1890
Author(s):  
Mihaela Birdeanu ◽  
Camelia Epuran ◽  
Ion Fratilescu ◽  
Eugenia Fagadar-Cosma

Covering steel surfaces with suitable materials with the capacity to protect against corrosion represents a challenge for both research and industry, as steel, due to its paramount utility, is the most recycled material. This study presents the realization of new sandwich type materials based on 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin or 5,15-(4-carboxy-phenyl)-10,20-diphenylporphyrin and MnTa2O6 designed to improve corrosion inhibition of steel in aggressive media. The thin films, designed as single- or sandwich-type structures were obtained on carbon steel through the drop-casting technique. Morphological investigations of thin films were carried out by field emission-scanning electron microscopy (SEM) and atomic force microscopy (AFM). The inhibition of a steel corrosion process was evaluated in an aggressive environment of 0.1 M HCl by performing electrochemical investigations such as open circuit potential (OCP) and the potentiodynamic polarization technique. The influence of variations in the cathodic Tafel slopes βc and anodic Tafel slopes βa over the corrosion rates was discussed. The best corrosion inhibition efficiency of 91.76% was realized by the steel electrode covered with sandwich-type layers of 5,15-(4-carboxy-phenyl)-10,20-diphenylporphyrin on the bottom layer and MnTa2O6 on the top. The effect of location of the COOH groups in the cis or trans position on the tetrapyrrolic ring was also discussed to understand the corrosion inhibition mechanism.


2021 ◽  
Author(s):  
Sihang Liu ◽  
Nitish Govindarajan ◽  
Hector Prats ◽  
Karen Chan

Kolbe electrolysis has been proposed an efficient electrooxidation process to synthesize (un)symmetrical dimers from biomass-based carboxylic acids. However, the reaction mechanism of Kolbe electrolysis remains controversial. In this work, we develop a DFT- based microkinetic model to study the reaction mechanism of Kolbe electrolysis of acetic acid (CH3COOH) on both pristine and partially oxidized Pt anodes. We show that the shift in the rate-determining step of oxygen evolution reaction (OER) on Pt(111)@α-PtO2 surface from OH* formation to H2O adsorption gives rise to the large Tafel slopes, i.e., the inflection zones, observed at high anodic potentials in experiments on Pt anodes. The activity passivation as a result of the inflection zone is further exacerbated in the presence of Kolbe species (i.e., CH3COO* and CH3*). Our simulations find the CH3COO* decarboxylation and CH3* dimerization steps determine the activity of Kolbe reaction during inflection zone. In contrast to the Pt(111)@α-PtO2 surface, Pt(111) shows no activity towards Kolbe products as the CH3COO* decarboxylation step is limiting throughout the considered potential range. This work resolves major controversies in the mechanistic analyses of Kolbe electrolysis on Pt anodes: the origin of the inflection zone, and the identity of the rate limiting step.


Author(s):  
V. Knysh ◽  
◽  
O. Shmychkova ◽  
T. Luk'yanenko ◽  
L. Dmitrikova ◽  
...  

The effect of potassium perfluorobutanesulfonate on the kinetic features of electrodeposition of lead dioxide from methanesulfonate electrolytes has been investigated. The introduction of C4F9SO3K into the lead dioxide deposition electrolyte leads to insignificant inhibition of the Pb2+ electrooxidation process, while the mechanism of the process does not change. A composite coating is formed upon deposition of coatings from electrolytes containing surfactants. The surface of a composite material consists of a mixture of clearly expressed large crystalline blocks with sharp angles and small crystals. Energy dispersive X-ray analysis revealed the satisfactory distribution of modifying elements in the entire sample bulk, and not only on the coating surface. It was shown that the electrocatalytic activity of lead dioxide–perfluorobuthanesulfonate composite differs from the undoped sample. The oxygen evolution reaction slightly decelerates on a PbO2–C4F9SO3K composite. The Tafel slopes in 1 M HClO4 calculated from these curves plotted in semilogarithmic coordinates are 136 and 145 mV dec–1 for undoped sample and lead dioxide-surfactant composite, respectively. The reaction of electrochemical oxidation of p-chlorophenol is characterized by the pseudo-first order kinetics with respect to the initial compound. The use of doped C4F9SO3K lead dioxide as an anode leads to the inhibition of the process of oxygen evolution and an almost one and a half higher rate of electrochemical conversion of 4-chlorophenol to aliphatic compounds.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1904
Author(s):  
Hye Ji Jang ◽  
So Jeong Park ◽  
Ju Hyun Yang ◽  
Sung-Min Hong ◽  
Choong Kyun Rhee ◽  
...  

ZIF-derivatized catalysts have shown high potential in catalysis. Herein, bean sprout-like Co-TiO2/Ti nanostructures were first synthesized by thermal treatment at 800 °C under Ar-flow conditions using sacrificial ZIF-67 templated on Ti sheets. It was observed that ZIF-67 on Ti sheets started to thermally decompose at around 350 °C and was converted to the cubic phase Co3O4. The head of the bean sprout structure was observed to be Co3O4, while the stem showed a crystal structure of rutile TiO2 grown from the metallic Ti support. Cu sputter-deposited Co-TiO2/Ti nanostructures were also prepared for photocatalytic and electrocatalytic CO2 reduction performances, as well as electrochemical oxygen reaction (OER). Gas chromatography results after photocatalytic CO2 reduction showed that CH3OH, CO and CH4 were produced as major products with the highest MeOH selectivity of 64% and minor C2 compounds of C2H2, C2H4 and C2H6. For electrocatalytic CO2 reduction, CO, CH4 and C2H4 were meaningfully detected, but H2 was dominantly produced. The amounts were observed to be dependent on the Cu deposition amount. Electrochemical OER performances in 0.1 M KOH electrolyte exhibited onset overpotentials of 330–430 mV (vs. RHE) and Tafel slopes of 117–134 mV/dec that were dependent on Cu-loading thickness. The present unique results provide useful information for synthesis of bean sprout-like Co-TiO2/Ti hybrid nanostructures and their applications to CO2 reduction and electrochemical water splitting in energy and environmental fields.


2021 ◽  
Author(s):  
Mingqiang Liu ◽  
Jia-ao Wang ◽  
Gui-Gen Wang ◽  
Fei Li ◽  
Ya-Wei Cai ◽  
...  

Abstract Molybdenum disulfide, as an electronic highly-adjustable catalysts material, tuning its electronic structure is crucial to enhance its intrinsic hydrogen evolution reaction (HER) activity. Nevertheless, there are yet huge challenges to the understanding and regulation of the surface electronic structure of molybdenum disulfide-based catalysts. Here we address these challenges by tuning its electronic structure of phase modulation synergistic with interfacial chemistry and defects from phosphorus or sulfur implantation, and we then successfully design and synthesize electrocatalysts with the multi-heterojunction interfaces (e.g., 1T0.81-MoS2@Ni2P), demonstrating superior HER activities and good stabilities with a small overpotentials of 38.9 and 98.5 mV at 10 mA/cm2, a low Tafel slopes of 41 and 42 mV/dec in acidic as well as alkaline surroundings, outperforming commercial Pt/C catalyst and other reported Mo-based catalysts. Theoretical calculation verified that the incorporation of metallic-phase and intrinsic HER-active Ni-based materials into molybdenum disulfide could effectively regulate its electronic structure for making the bandgap narrower. Additionally, reduced nickel possesses empty orbitals, which is helpful for additional H binding ability. All these factors can decrease Mo-H bond strength, greatly improving the HER catalytic activity of these materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 437
Author(s):  
Jun Yu ◽  
Qi Cao ◽  
Chen Qiu ◽  
Lei Chen ◽  
Jean-Jacques Delaunay

Oxygen evolution reaction (OER) is the key reaction for water splitting, which is used for hydrogen production. Oxygen vacancy engineering is an effective method to tune the OER performance, but the direct relationship between the concentration of oxygen vacancy and OER activity is not well understood. Herein, a series of NiyCe100−yOx with different concentration of oxygen vacancies were successfully synthesized. The larger concentration of oxygen vacancies in Ni75Ce25Ox and Ni50Ce50Ox result in their lower Tafel slopes, small mass-transfer resistance, and larger electrochemical surface areas of the catalysts, which account for the higher OER activities for these two catalysts. Moreover, with a fixed current density of 10 mA/cm2, the potential remains stable at 1.57 V for more than 100 h, indicating the long-term stability of the Ni75Ce25Ox catalyst.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aditya M. Limaye ◽  
Joy S. Zeng ◽  
Adam P. Willard ◽  
Karthish Manthiram

AbstractThe Tafel slope is a key parameter often quoted to characterize the efficacy of an electrochemical catalyst. In this paper, we develop a Bayesian data analysis approach to estimate the Tafel slope from experimentally-measured current-voltage data. Our approach obviates the human intervention required by current literature practice for Tafel estimation, and provides robust, distributional uncertainty estimates. Using synthetic data, we illustrate how data insufficiency can unknowingly influence current fitting approaches, and how our approach allays these concerns. We apply our approach to conduct a comprehensive re-analysis of data from the CO2 reduction literature. This analysis reveals no systematic preference for Tafel slopes to cluster around certain "cardinal values” (e.g. 60 or 120 mV/decade). We hypothesize several plausible physical explanations for this observation, and discuss the implications of our finding for mechanistic analysis in electrochemical kinetic investigations.


Sign in / Sign up

Export Citation Format

Share Document