scholarly journals Molecular dynamics with constrained nuclear electronic orbital density functional theory: Accurate vibrational spectra from efficient incorporation of nuclear quantum effects

Author(s):  
Xi Xu ◽  
Zehua Chen ◽  
Yang Yang

Nuclear quantum effects play a crucial role in many chemical and biological systems involving hydrogen atoms yet are difficult to include in practical molecular simulations. In this Letter, we combine our recently developed methods of constrained nuclear-electronic orbital density functional theory (cNEO-DFT) and constrained minimized energy surface molecular dynamics (CMES-MD) to create a new method for accurately and efficiently describing nuclear quantum effects in molecular simulations. Using this new method, dubbed cNEO-MD, the vibrational spectra of a set of small molecules are calculated and compared with those from conventional ab initio molecular dynamics (AIMD) as well as from experiments. With the same formal scaling, cNEO-MD greatly outperforms AIMD in describing the vibrational modes with significant hydrogen motion characters, demonstrating the promise of cNEO-MD for simulating chemical and biological systems with significant nuclear quantum effects.

2018 ◽  
Vol 20 (17) ◽  
pp. 11554-11558 ◽  
Author(s):  
Jiabo Le ◽  
Qiyuan Fan ◽  
Laura Perez-Martinez ◽  
Angel Cuesta ◽  
Jun Cheng

Density functional theory based molecular dynamics simulations reveal that the specific adsorption of surface water causes a red-shift of the O–H stretching frequency at the Pt–water interface.


2018 ◽  
Vol 6 (14) ◽  
pp. 3642-3650 ◽  
Author(s):  
Naga Rajesh Tummala ◽  
Saadullah G. Aziz ◽  
Veaceslav Coropceanu ◽  
Jean-Luc Bredas

We investigate mixtures of fullerenes and fullerene derivatives, the most commonly used electron accepting materials in organic solar cells, by using a combination of molecular dynamics and density functional theory methods.


Sign in / Sign up

Export Citation Format

Share Document