scholarly journals Short-Chained Anthracene Strapped Porphyrins and Their Endoperoxides

Author(s):  
Susan Callaghan ◽  
Keith Flanagan ◽  
John E. O'Brien ◽  
Mathias Senge

The synthesis of short-chained anthracene-strapped porphyrins and their Zn(II)complexes are reported. The key synthetic step employed was a [2+2] condensation between a dipyrromethane and 2,2'-((anthracene-9,10-diylbis(methylene))bis(oxy))dibenzaldehyde. Following exposure to polychromatic light, self-sensitized singlet oxygen and the anthracene moieties underwent [4+2] cycloaddition reactions to yield the corresponding endoperoxides. 1H NMR studies demonstrate that the endoperoxide readily formed in chloroform-d and decayed at 85 °C. X-ray crystallography and absorption spectroscopy were used to confirm macrocyclic distortion in the parent strapped porphyrins and endoperoxides. Additionally, X-ray crystallography indicated that endoperoxide formation occurred exclusively on the outside face of the anthracene moiety.<br>

2020 ◽  
Author(s):  
Susan Callaghan ◽  
Keith Flanagan ◽  
John E. O'Brien ◽  
Mathias Senge

The synthesis of short-chained anthracene-strapped porphyrins and their Zn(II)complexes are reported. The key synthetic step employed was a [2+2] condensation between a dipyrromethane and 2,2'-((anthracene-9,10-diylbis(methylene))bis(oxy))dibenzaldehyde. Following exposure to polychromatic light, self-sensitized singlet oxygen and the anthracene moieties underwent [4+2] cycloaddition reactions to yield the corresponding endoperoxides. 1H NMR studies demonstrate that the endoperoxide readily formed in chloroform-d and decayed at 85 °C. X-ray crystallography and absorption spectroscopy were used to confirm macrocyclic distortion in the parent strapped porphyrins and endoperoxides. Additionally, X-ray crystallography indicated that endoperoxide formation occurred exclusively on the outside face of the anthracene moiety.<br>


2000 ◽  
Vol 78 (5) ◽  
pp. 590-597 ◽  
Author(s):  
Umarani Rajalingam ◽  
Philip AW Dean ◽  
Hilary A Jenkins

The complex salts CdL4(O3SCF3)2 (L = 2(1H)-pyridinethione (Py2SH), 4(1H)-pyridinethione (Py4SH), or 2(1H)-quinolinethione (Q2SH)) have been synthesized by the stoichiometric reaction of Cd(O3SCF3)2 and the appropriate thione. Both ambient-temperature 13C and reduced-temperature 111Cd NMR of CdL4(O3SCF3)2 in solution are consistent with L being bound through sulfur. Reduced-temperature NMR (31P, 77Se, 111Cd, as appropriate) of mixtures of CdL4(O3SCF3)2 and Cd(EPCy3)4(O3SCF3)2 (E = Se, Cy = c-C6H11) and of Cd(EPCy3)4(O3SCF3)2 (E = S, Se) and L in solution provides evidence for various [CdLn(EPCy3)4-n]2+. Similarly, reduced-temperature metal NMR of [CdL4]2+ and [CdL'4]2+ (L, L' = Py2SH, Py4SH, Q2SH; L not equal L') in solution shows the formation of [CdLnL'4-n]2+. Thus it has been demonstrated that at reduced temperature [CdL4]2+ is intact in solution and exchange of L is slow on the timescale of the metal chemical shift differences. From the NMR studies of Cd(EPCy3)4(O3SCF3)2 (E = S, Se):L mixtures, the binding preferences are found to be L > EPCy3 in solution. Similarly, from the reduced temperature metal NMR spectra of mixtures where L and L' compete for Cd(II) in solution, the binding preferences are Py4SH > Py2SH > Q2SH. The structure of Cd(Py2SH)4(NO3)2 (4) has been determined by single crystal X-ray analysis. Colorless crystals of 4 are tetragonal, I4(1)/acd with 8 molecules per unit cell of dimensions a = 18.660(3), c = 15.215(3) Å. The structure is comprised of recognizable NO3- anions and [Cd(Py2SH)4]2+ cations. In the cations, which have S4 symmetry, the ligands are S-bound. A network of NH···O hydrogen bonds links the cations and anions.Key words: aromatic heterocyclic thiones, cadmium complexes, phosphine chalcogenides, 111Cd, 31P, 77Se NMR, X-ray crystallography.


2013 ◽  
Vol 11 (7) ◽  
pp. 1225-1238
Author(s):  
Iliana Medina-Ramírez ◽  
Cynthia Floyd ◽  
Joel Mague ◽  
Mark Fink

AbstractThe reaction of R3M (M=Ga, In) with HESiR′3 (E=O, S; R′3=Ph3, iPr3, Et3, tBuMe2) leads to the formation of (Me2GaOSiPh3)2(1); (Me2GaOSitBuMe2)2(2); (Me2GaOSiEt3)2(3); (Me2InOSiPh3)2(4); (Me2InOSitBuMe2)2(5); (Me2InOSiEt3)2(6); (Me2GaSSiPh3)2(7); (Et2GaSSiPh3)2(8); (Me2GaSSiiPr3)2(9); (Et2GaSSiiPr3)2(10); (Me2InSSiPh3)3(11); (Me2InSSiiPr3)n(12), in high yields at room temperature. The compounds have been characterized by multinuclear NMR and in most cases by X-ray crystallography. The molecular structures of (1), (4), (7) and (8) have been determined. Compounds (3), (6) and (10) are liquids at room temperature. In the solid state, (1), (4), (7) and (9) are dimers with central core of the dimer being composed of a M2E2 four-membered ring. VT-NMR studies of (7) show facile redistribution between four- and six-membered rings in solution. The thermal decomposition of (1)–(12) was examined by TGA and range from 200 to 350°C. Bulk pyrolysis of (1) and (2) led to the formation of Ga2O3; (4) and (5) In metal; (7)–(10) GaS and (11)–(12) InS powders, respectively.


Molbank ◽  
10.3390/m1077 ◽  
2019 ◽  
Vol 2019 (3) ◽  
pp. M1077
Author(s):  
Lan ◽  
Zheng ◽  
Wang

The compound 2-(3,5-dimethyl-1H-pyrazol-1-yl)thiazolo[4,5-b]pyridine (1) was synthesized with a yield of 71% by the reaction of 1-(thiazolo[4,5-b]pyridine-2-yl)hydrazine and acetylacetone. The structure was characterized by a single-crystal X-ray structure determination as well as 1H and 13C{1H} NMR spectroscopy. X-ray crystallography on 1 confirms the molecule consists of a pyridine–thiazole moiety and the pyrazole ring, and all non-hydrogen atoms are planar.


2017 ◽  
Vol 95 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Jianlong Sun ◽  
David J. Berg ◽  
Brendan Twamley

The synthesis of tetrabenzo[a,c,g,i]fluorenyl (Tbf) yttrium dialkyl complexes, (Tbf)Y(CH2SiMe3)2(L) (L = tetrahydrofuran (THF), 1; L = bipy, 2), by direct protonolysis of the tris(alkyl) complex, Y(CH2SiMe3)3(THF)2, are reported. The X-ray crystal structures of 1 and 2 display the helical twisting typically observed for the Tbf ligand. Dynamic nuclear magnetic resonance (NMR) studies on 1 show a barrier to Tbf helical inversion (epimerization or “wagging”) of 38.1 ± 0.5 kJ mol−1. The reaction of 1 with acidic hydrocarbons such as 1,3-bis(trimethylsilyl)cyclopentadiene or trimethylsilylacetylene results in protonolysis to form the mixed Cp derivative [(Tbf){C5H3(SiMe3)2}Y(CH2SiMe3)(THF)] (3) or [(Tbf)Y(CCSiMe3)2(THF)]n (4), respectively. In the case of 4, a small amount of the trinuclear cluster (Tbf)Y3(μ3-CCSiMe3)2(μ2-CCSiMe3)3(CCSiMe3)3(THF)2 (5) was isolated and characterized by X-ray crystallography. Dialkyl 1 undergoes smooth insertion of trimethylsilyl isocyanate to afford [(Tbf)Y{κ2-(N,O)-Me3SiN(Me3SiCH2)CO}2(THF)] (6) but it does not react with alkenes. Treating 1 with [Ph3C]+[B(C6F5)4]− in bromobenzene generates a moderately active ethylene polymerization catalyst (36 kg mol−1 h−1 bar−1).


2005 ◽  
Vol 58 (3) ◽  
pp. 199 ◽  
Author(s):  
Ethan D. Goddard-Borger ◽  
Brian W. Skelton ◽  
Robert V. Stick ◽  
Allan H. White

The use of 1H NMR spectroscopy, in tandem with X-ray crystallography, has cast light on the conformation of the 1,6-disulfide-bridged derivatives of d-gluco-, d-manno-, d-allo-, d-galacto-, and d-talo-pyranose. A similar investigation was performed on the thiosulfinate derived from the d-gluco disulfide. Single-crystal X-ray structure determinations are reported for (1S,5S,6S,7S,8R)-6,7,8-tribenzoyloxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane, (1S,5S,6S,7R,8R)-6,7,8-tribenzoyloxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane, and (1S,2S,5S,6S,7S,8R)-6,7,8-triacetoxy-9-oxa-2,3-dithiabicyclo[3.3.1]nonane 2-oxide.


Sign in / Sign up

Export Citation Format

Share Document