scholarly journals Triplet State Baird-Aromaticity in Macrocycles: Scope, Limitations and Complications

Author(s):  
Rabia Ayub ◽  
Ouissam El Bakouri ◽  
Joshua R. Smith ◽  
Kjell Jorner ◽  
Henrik Ottosson

<p>The aromaticity of cyclic 4<i>n</i>p-electron molecules in their first pp* triplet state (T<sub>1</sub>), labelled Baird-aromaticity, has gained growing attention in the last decade. Here we explore computationally the limitations of T<sub>1</sub> state Baird-aromaticity in macrocyclic compounds, <b>[<i>n</i>]CM</b>’s, which are cyclic oligomers of four different monocycles (M = <i>para</i>-phenylene (PP), 2,5-linked furan (FU), 1,4-linked cyclohexa-1,3-diene (CHD), and 1,4-linked cyclopentadiene (CPD)). We strive for conclusions that are general for various DFT functionals, although for macrocycles with up to 20 p-electrons in their main conjugation paths we find that for their T<sub>1</sub> states single-point energies at both canonical UCCSD(T) and approximative DLPNO-UCCSD(T) levels are lowest when based on UB3LYP over UM06-2X and UCAM-B3LYP geometries. This finding is in contrast to what has earlier been observed for the electronic ground state of expanded porphyrins. Yet, irrespective of functional, macrocycles with 2,5-linked furans (<b>[<i>n</i>]CFU</b>’s) retain Baird-aromaticity until larger <i>n</i> than those composed of the other three monocycles. Also, when based on geometric, electronic and energetic aspects of aromaticity, a <b><sup>3</sup>[<i>n</i>]CFU</b> with a specific <i>n</i> is more strongly Baird-aromatic than the analogous <b><sup>3</sup>[<i>n</i>]CPP</b> while the magnetic indices tell the opposite. To construct large T<sub>1</sub> state Baird-aromatic <b>[<i>n</i>]CM</b>’s the design should be such that the T<sub>1</sub> state Baird-aromaticity of the macrocyclic perimeter dominates over a situation with local closed-shell Hückel-aromaticity of one or a few monocycles and semi-localized triplet diradical character. Monomers with lower Hückel-aromaticity in S<sub>0</sub> than benzene (<i>e.g.</i>, furan) that do not impose steric congestion are preferred. Structural confinement imposed by, <i>e.g.</i>, methylene bridges is also an approach to larger Baird-aromatic macrocycles. Finally, by using the Zilberg-Haas description of T<sub>1</sub> state aromaticity we reveal the analogy to the Hückel-aromaticity of the corresponding closed-shell dications, yet, observe stronger Hückel-aromaticity in the macrocyclic dications than Baird-aromaticity in the T<sub>1</sub> states of the neutral macrocycles. </p>

2020 ◽  
Author(s):  
Rabia Ayub ◽  
Ouissam El Bakouri ◽  
Joshua R. Smith ◽  
Kjell Jorner ◽  
Henrik Ottosson

<p>The aromaticity of cyclic 4<i>n</i>p-electron molecules in their first pp* triplet state (T<sub>1</sub>), labelled Baird-aromaticity, has gained growing attention in the last decade. Here we explore computationally the limitations of T<sub>1</sub> state Baird-aromaticity in macrocyclic compounds, <b>[<i>n</i>]CM</b>’s, which are cyclic oligomers of four different monocycles (M = <i>para</i>-phenylene (PP), 2,5-linked furan (FU), 1,4-linked cyclohexa-1,3-diene (CHD), and 1,4-linked cyclopentadiene (CPD)). We strive for conclusions that are general for various DFT functionals, although for macrocycles with up to 20 p-electrons in their main conjugation paths we find that for their T<sub>1</sub> states single-point energies at both canonical UCCSD(T) and approximative DLPNO-UCCSD(T) levels are lowest when based on UB3LYP over UM06-2X and UCAM-B3LYP geometries. This finding is in contrast to what has earlier been observed for the electronic ground state of expanded porphyrins. Yet, irrespective of functional, macrocycles with 2,5-linked furans (<b>[<i>n</i>]CFU</b>’s) retain Baird-aromaticity until larger <i>n</i> than those composed of the other three monocycles. Also, when based on geometric, electronic and energetic aspects of aromaticity, a <b><sup>3</sup>[<i>n</i>]CFU</b> with a specific <i>n</i> is more strongly Baird-aromatic than the analogous <b><sup>3</sup>[<i>n</i>]CPP</b> while the magnetic indices tell the opposite. To construct large T<sub>1</sub> state Baird-aromatic <b>[<i>n</i>]CM</b>’s the design should be such that the T<sub>1</sub> state Baird-aromaticity of the macrocyclic perimeter dominates over a situation with local closed-shell Hückel-aromaticity of one or a few monocycles and semi-localized triplet diradical character. Monomers with lower Hückel-aromaticity in S<sub>0</sub> than benzene (<i>e.g.</i>, furan) that do not impose steric congestion are preferred. Structural confinement imposed by, <i>e.g.</i>, methylene bridges is also an approach to larger Baird-aromatic macrocycles. Finally, by using the Zilberg-Haas description of T<sub>1</sub> state aromaticity we reveal the analogy to the Hückel-aromaticity of the corresponding closed-shell dications, yet, observe stronger Hückel-aromaticity in the macrocyclic dications than Baird-aromaticity in the T<sub>1</sub> states of the neutral macrocycles. </p>


2020 ◽  
Author(s):  
Rabia Ayub ◽  
Ouissam El Bakouri ◽  
Joshua R. Smith ◽  
Kjell Jorner ◽  
Henrik Ottosson

<p>The aromaticity of cyclic 4<i>n</i>p-electron molecules in their first pp* triplet state (T<sub>1</sub>), labelled Baird-aromaticity, has gained growing attention in the last decade. Here we explore computationally the limitations of T<sub>1</sub> state Baird-aromaticity in macrocyclic compounds, <b>[<i>n</i>]CM</b>’s, which are cyclic oligomers of four different monocycles (M = <i>para</i>-phenylene (PP), 2,5-linked furan (FU), 1,4-linked cyclohexa-1,3-diene (CHD), and 1,4-linked cyclopentadiene (CPD)). We strive for conclusions that are general for various DFT functionals, although for macrocycles with up to 20 p-electrons in their main conjugation paths we find that for their T<sub>1</sub> states single-point energies at both canonical UCCSD(T) and approximative DLPNO-UCCSD(T) levels are lowest when based on UB3LYP over UM06-2X and UCAM-B3LYP geometries. This finding is in contrast to what has earlier been observed for the electronic ground state of expanded porphyrins. Yet, irrespective of functional, macrocycles with 2,5-linked furans (<b>[<i>n</i>]CFU</b>’s) retain Baird-aromaticity until larger <i>n</i> than those composed of the other three monocycles. Also, when based on geometric, electronic and energetic aspects of aromaticity, a <b><sup>3</sup>[<i>n</i>]CFU</b> with a specific <i>n</i> is more strongly Baird-aromatic than the analogous <b><sup>3</sup>[<i>n</i>]CPP</b> while the magnetic indices tell the opposite. To construct large T<sub>1</sub> state Baird-aromatic <b>[<i>n</i>]CM</b>’s the design should be such that the T<sub>1</sub> state Baird-aromaticity of the macrocyclic perimeter dominates over a situation with local closed-shell Hückel-aromaticity of one or a few monocycles and semi-localized triplet diradical character. Monomers with lower Hückel-aromaticity in S<sub>0</sub> than benzene (<i>e.g.</i>, furan) that do not impose steric congestion are preferred. Structural confinement imposed by, <i>e.g.</i>, methylene bridges is also an approach to larger Baird-aromatic macrocycles. Finally, by using the Zilberg-Haas description of T<sub>1</sub> state aromaticity we reveal the analogy to the Hückel-aromaticity of the corresponding closed-shell dications, yet, observe stronger Hückel-aromaticity in the macrocyclic dications than Baird-aromaticity in the T<sub>1</sub> states of the neutral macrocycles. </p>


2018 ◽  
Vol 54 (48) ◽  
pp. 6136-6139 ◽  
Author(s):  
Yan Lu ◽  
Hongmin Li ◽  
Manabu Abe ◽  
Didier Bégué ◽  
Huabin Wan ◽  
...  

Two prototypical sulfamoyl nitrenes R2NS(O)2–N (R = H and Me) in the triplet state were generated via the closed-shell singlet state by passing a low-energy minimum energy crossing point (MECP).


1993 ◽  
Vol 48 (7) ◽  
pp. 829-833
Author(s):  
Wolfhard Koch

Abstract Focusing on relative stabilities of electronic states with different spin multiplicities of polyatomic molecules, a simplified unrestricted Hartree-Fock (SUHF) procedure is described. Using different orbitals for different spins (DODS), electron correlation effects of both closed-shell and open-shell systems are expected to be taken into account in the simplest way. While working within a symmetrically orthogonalized (Löwdin) basis we make use of the NDDO approximation (neglect of diatomic differential overlap) concerning the evaluation of electron repulsion and nuclear attraction integrals. Originally, a locally orthogonalized all-electron atomic orbital set of Slater type is considered. The approximation method is completely non-empirical. Rotational invariance is fully retained.


2018 ◽  
Vol 20 (30) ◽  
pp. 20270-20279 ◽  
Author(s):  
Ayan Ghosh ◽  
Arijit Gupta ◽  
Rishabh Gupta ◽  
Tapan K. Ghanty

Existence of noble gas-inserted ketenyl cations, HNgCCO+ (Ng = He, Ne, Ar, Kr, and Xe) species, with a triplet electronic ground state is predicted through ab initio calculations.


2021 ◽  
Author(s):  
Ashima Bajaj ◽  
Md. Ehesan Ali

The recent accomplishments in the design of molecular nanowires characterised by an increasing conductance with length has embarked the origin of extraordinary new family of molecular junctions referred to as "anti-ohmic" wires. Herein, this highly desirable, non-classical behavior, has been examined for the longer enough molecules exhibiting pronounced diradical character in their ground state within the unrestricted DFT formalism with spin and spatial symmetry breaking. We demonstrate that highly conjugated acenes signals higher resistance in open-shell singlet (OSS) configuration as compared to their closed-shell counterparts. This anomaly has been further put to proof for experimentally certified cumulene wires, which reveals phenomenal modulation in the transport characteristics such that an increasing conductance is observed in closed-shell limit, while higher cumulenes in OSS ground state yields a regular decay of conductance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matúš Orendáč ◽  
Slavomír Gabáni ◽  
Pavol Farkašovský ◽  
Emil Gažo ◽  
Jozef Kačmarčík ◽  
...  

AbstractWe present a study of the ground state and stability of the fractional plateau phase (FPP) with M/Msat = 1/8 in the metallic Shastry–Sutherland system TmB4. Magnetization (M) measurements show that the FPP states are thermodynamically stable when the sample is cooled in constant magnetic field from the paramagnetic phase to the ordered one at 2 K. On the other hand, after zero-field cooling and subsequent magnetization these states appear to be of dynamic origin. In this case the FPP states are closely associated with the half plateau phase (HPP, M/Msat = ½), mediate the HPP to the low-field antiferromagnetic (AF) phase and depend on the thermodynamic history. Thus, in the same place of the phase diagram both, the stable and the metastable (dynamic) fractional plateau (FP) states, can be observed, depending on the way they are reached. In case of metastable FP states thermodynamic paths are identified that lead to very flat fractional plateaus in the FPP. Moreover, with a further decrease of magnetic field also the low-field AF phase becomes influenced and exhibits a plateau of the order of 1/1000 Msat.


1997 ◽  
Vol 56 (24) ◽  
pp. 15740-15743 ◽  
Author(s):  
Augusto Gonzalez ◽  
Bart Partoens ◽  
François M. Peeters

Sign in / Sign up

Export Citation Format

Share Document