scholarly journals Mechanisms for Flavin Mediated Oxidation: Hydride or Hydrogen-Atom Transfer?

Author(s):  
Felipe Curtolo ◽  
Guilherme M. Arantes

Flavins are versatile biological cofactors which catalyze proton-coupled electron transfers (PCET) with varying number and coupling of electrons. Flavin mediated oxidation of nicotinamide adenine dinucleotide (NADH) and of succinate, initial redox reactions in cellular respiration, were examined here with multiconfigurational quantum chemical calculations and a simple analysis of the wave-function proposed to quantify electron transfer along the proton reaction coordinate. The mechanism of NADH oxidation is a prototypical hydride transfer, with two electrons moving concerted with the proton to the same acceptor group. However, succinate oxidation depends on the elimination step and can proceed through the transfer of hydride or hydrogen-atom, with proton and electrons moving to different groups in both cases. These results help to determine the mechanism of fundamental but still debated biochemical reactions, and illustrate a new diagnostic tool for electron transfer that can be useful to characterize a broad class of PCET processes. <br>

2020 ◽  
Author(s):  
Felipe Curtolo ◽  
Guilherme M. Arantes

Flavins are versatile biological cofactors which catalyze proton-coupled electron transfers (PCET) with varying number and coupling of electrons. Flavin mediated oxidation of nicotinamide adenine dinucleotide (NADH) and of succinate, initial redox reactions in cellular respiration, were examined here with multiconfigurational quantum chemical calculations and a simple analysis of the wave-function proposed to quantify electron transfer along the proton reaction coordinate. The mechanism of NADH oxidation is a prototypical hydride transfer, with two electrons moving concerted with the proton to the same acceptor group. However, succinate oxidation depends on the elimination step and can proceed through the transfer of hydride or hydrogen-atom, with proton and electrons moving to different groups in both cases. These results help to determine the mechanism of fundamental but still debated biochemical reactions, and illustrate a new diagnostic tool for electron transfer that can be useful to characterize a broad class of PCET processes. <br>


2015 ◽  
Vol 68 (11) ◽  
pp. 1640 ◽  
Author(s):  
Eietsu Hasegawa ◽  
Shin-ya Takizawa

2-Aryl-1,3-dimethylbenzimidazolines (DMBIHs) have been applied to photoinduced electron-transfer reductions of various organic substrates. Either direct or indirect electron transfer between the substrates and DMBIHs is utilized to promote the desired transformations. Photoexcitation of the substrates using light above 280 nm was carried out in the former protocol whereas a photosensitization method using materials such as substituted pyrenes, ruthenium and iridium complexes that absorb longer-wavelength light was employed in the latter. In these reactions, DMBIHs undergo initial electron transfer and subsequent proton or hydrogen atom transfer.


2014 ◽  
Vol 16 (36) ◽  
pp. 19437-19445 ◽  
Author(s):  
Josep M. Anglada ◽  
Santiago Olivella ◽  
Albert Solé

The amidogen radical abstracts the hydrogen from nitric acid through a proton coupled electron transfer mechanism rather than by an hydrogen atom transfer process.


Science ◽  
2019 ◽  
Vol 366 (6463) ◽  
pp. 364-369 ◽  
Author(s):  
Nick Y. Shin ◽  
Jonathan M. Ryss ◽  
Xin Zhang ◽  
Scott J. Miller ◽  
Robert R. Knowles

Deracemization is an attractive strategy for asymmetric synthesis, but intrinsic energetic challenges have limited its development. Here, we report a deracemization method in which amine derivatives undergo spontaneous optical enrichment upon exposure to visible light in the presence of three distinct molecular catalysts. Initiated by an excited-state iridium chromophore, this reaction proceeds through a sequence of favorable electron, proton, and hydrogen-atom transfer steps that serve to break and reform a stereogenic C–H bond. The enantioselectivity in these reactions is jointly determined by two independent stereoselective steps that occur in sequence within the catalytic cycle, giving rise to a composite selectivity that is higher than that of either step individually. These reactions represent a distinct approach to creating out-of-equilibrium product distributions between substrate enantiomers using excited-state redox events.


Sign in / Sign up

Export Citation Format

Share Document