no3 radical
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 29)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Hongru Shen ◽  
Defeng Zhao ◽  
Iida Pullinen ◽  
Sungah Kang ◽  
Luc Vereecken ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (19) ◽  
pp. 15337-15349
Author(s):  
Spiro D. Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John K. Kodros ◽  
Christina Vasilakopoulou ◽  
...  

Abstract. Residential biomass burning for heating purposes is an important source of air pollutants during winter. Here we test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through oxidation of the emitted organic vapors by the nitrate (NO3) radical produced during the reaction of ozone and nitrogen oxides. We use a mobile dual smog chamber system which allows the study of chemical aging of ambient air against a control reference. Ambient urban air sampled during a wintertime campaign during nighttime periods with high concentrations of biomass burning emissions was used as the starting point for the aging experiments. Biomass burning organic aerosol (OA) was, on average, 70 % of the total OA at the beginning of our experiments. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO3 radical production and aging), while the second chamber was used as a reference. Following the injection of ozone, rapid OA formation was observed in all experiments, leading to increases in the OA concentration by 20 %–70 %. The oxygen-to-carbon ratio of the OA increased on average by 50 %, and the mass spectra of the produced OA was quite similar to the oxidized OA mass spectra reported during winter in urban areas. Furthermore, good correlation was found for the OA mass spectra between the ambient-derived emissions in this study and the nocturnal aged laboratory-derived biomass burning emissions from previous work. Concentrations of NO3 radicals as high as 25 ppt (parts per trillion) were measured in the perturbed chamber, with an accompanying production of 0.1–3.2 µg m−3 of organic nitrate in the aerosol phase. Organic nitrate represented approximately 10 % of the mass of the secondary OA formed. These results strongly indicate that the OA in biomass burning plumes can chemically evolve rapidly even during wintertime periods with low photochemical activity.


2021 ◽  
Vol 21 (17) ◽  
pp. 13537-13551
Author(s):  
Yangang Ren ◽  
Li Zhou ◽  
Abdelwahid Mellouki ◽  
Véronique Daële ◽  
Mahmoud Idir ◽  
...  

Abstract. Rate coefficients for the reaction of NO3 radicals with a series of aromatic aldehydes were measured in a 7300 L simulation chamber at ambient temperature and pressure by relative and absolute methods. The rate coefficients for benzaldehyde (BA), ortho-tolualdehyde (O-TA), meta-tolualdehyde (M-TA), para-tolualdehyde (P-TA), 2,4-dimethyl benzaldehyde (2,4-DMBA), 2,5-dimethyl benzaldehyde (2,5-DMBA) and 3,5-dimethyl benzaldehyde (3,5-DMBA) were k1= 2.6 ± 0.3, k2= 8.7 ± 0.8, k3= 4.9 ± 0.5, k4= 4.9 ± 0.4, k5= 15.1 ± 1.3, k6= 12.8 ± 1.2 and k7= 6.2 ± 0.6, respectively, in the units of 10−15 cm3 molec.−1 s−1 at 298 ± 2 K. The rate coefficient k13 for the reaction of the NO3 radical with deuterated benzaldehyde (benzaldehyde-d1) was found to be half that of k1. The end product of the reaction in an excess of NO2 was measured to be C6H5C(O)O2NO2. Theoretical calculations of aldehydic bond energies and reaction pathways indicate that the NO3 radical reacts primarily with aromatic aldehydes through the abstraction of an aldehydic hydrogen atom. The atmospheric implications of the measured rate coefficients are briefly discussed.


2021 ◽  
Vol 21 (9) ◽  
pp. 7357-7372
Author(s):  
Meri Räty ◽  
Otso Peräkylä ◽  
Matthieu Riva ◽  
Lauriane Quéléver ◽  
Olga Garmash ◽  
...  

Abstract. Cyclohexene (C6H10) is commonly used as a proxy for biogenic monoterpenes, when studying their oxidation mechanisms and secondary organic aerosol (SOA) formation. The ozonolysis of cyclohexene has been shown to be effective at producing highly oxygenated organic molecules (HOMs), a group of molecules known to be important in the formation of SOA. Here, we provide an in-depth look at how the formation and fate of the broad range of observed HOMs changed with perturbations from NOx and seed particles. HOMs were produced in a chamber from cyclohexene ozonolysis and measured with a chemical ionisation mass spectrometer (CIMS) using nitrate (NO3-) as reagent ion. As high-resolution CIMS instruments provide mass spectra with numerous ion signals and a wealth of information that can be hard to manage, we employed a primarily statistical approach for the data analysis. To utilise as many individual HOM signals as possible, each compound was assigned a parameter describing the quality of the observed signal. These parameters were then used as weights or to determine the inclusion of a given signal in further analyses. Under unperturbed ozonolysis conditions, known HOM peaks were observed in the chamber, including C6H8O9 as the largest HOM signal and C12H20O9 as the largest “dimer” product. With the addition of nitric oxide (NO) into the chamber, the spectrum changed considerably, as expected. Dimer product signals decreased overall, but an increase in dimers with nitrate functionalities was seen, as a result of NO3 radical oxidation. The response of monomer signals to NO addition varied, and while nitrate-containing monomers increased, non-nitrate signals either increased or decreased, depending on the individual molecules. The addition of seed aerosol increased the condensation sink, which markedly decreased the signals of all low-volatility compounds. Larger molecules were seen to have a higher affinity for condensation, but a more detailed analysis showed that the uptake was controlled mainly by the number of oxygen atoms in each molecule. Nitrates required higher mass and higher oxygen content to condense at similar rates as the non-nitrate HOMs. We also tested two existing elemental-composition-based parameterisations for their ability to reproduce the condensation observed in our cyclohexene system. Both predicted higher volatilities than observed, most likely due to the number of oxygen atoms enhancing the product uptake more than the models would suggest.


2021 ◽  
Author(s):  
Spiro Jorga ◽  
Kalliopi Florou ◽  
Christos Kaltsonoudis ◽  
John Kodros ◽  
Christina Vasilakopoulou ◽  
...  

Abstract. Residential biomass burning for heating purposes is an important source of air pollutants during winter. Here we test the hypothesis that significant secondary organic aerosol production can take place even during winter nights through oxidation of the emitted organic vapors by the nitrate (NO3) radical produced during the reaction of ozone and nitrogen oxides. We use a mobile dual smog chamber system which allows the study of chemical aging of ambient air against a control reference. Ambient urban air sampled during a wintertime campaign during night-time periods with high concentrations of biomass burning organic aerosol was used as the starting point of the aging experiments. Ozone was added in the perturbed chamber to simulate mixing with background air (and subsequent NO3 radical production and aging), while the second chamber was used as a reference. Following the injection of ozone rapid organic aerosol (OA) formation was observed in all experiments leading to increases of the OA concentration by 20–70 %. The oxygen-to-carbon ratio of the OA increased on average by 50 % and the mass spectra of the produced OA was quite similar to the oxidized OA mass spectra reported during winter in urban areas. Further, good correlation was found for the OA mass spectra between the ambient-derived emissions in this study and the nocturnal aged laboratory-derived biomass burning emissions from previous work. Concentrations of NO3 radicals as high as 25 ppt were measured in the perturbed chamber with an accompanying production of 0.1–3.2 μg m−3 of organic nitrate in the aerosol phase. These results strongly indicate that the OA in biomass burning plumes can chemically evolve rapidly even during wintertime periods with low photochemical activity.


2021 ◽  
Author(s):  
Yangang Ren ◽  
Li Zhou ◽  
Abdelwahid Mellouki ◽  
Véronique Daële ◽  
Mahmoud Idir ◽  
...  

Abstract. Rate coefficients for the reaction of NO3 radicals with a series of aromatic aldehydes were measured in a 7300 liter simulation chamber at ambient temperature and pressure by relative and absolute methods. The rate coefficients for benzaldehyde (BA), ortho-tolualdehyde (O-TA), meta-tolualdehyde (M-TA), para-tolualdehyde (P-TA), 2,4-dimethyl benzaldehyde (2,4-DMBA), 2,5-dimethyl benzaldehyde (2,5-DMBA) and 3,5-dimethyl benzaldehyde (3,5-DMBA) were: k1 = 2.6 ± 0.3, k2 = 8.8 ± 0.8, k3 = 4.8 ± 0.5, k4 = 4.9 ± 0.5, k5 = 15.1 ± 1.4, k6 = 12.7 ± 1.2 and k7 = 6.2 ± 0.6, respectively, in the units of 10−15 cm3 molecule−1 s−1 at 298 ± 2 K. The rate coefficient k13 for the reaction of the NO3 radical with deuterated benzaldehyde (benzaldehyde-d1) was found to be half that of k1. The end product of the reaction with an excess of NOx was measured to be C6H5C(O)O2NO2. Theoretical calculations of aldehydic bond energies and reaction pathways indicate that NO3 radical reacts with aromatic aldehydes through the abstraction of aldehydic hydrogen atom. The atmospheric implications of the measured rate coefficients are briefly discussed.


2021 ◽  
pp. 118387
Author(s):  
Zhongyi Zhang ◽  
Lin Cao ◽  
Yue Liang ◽  
Wei Guo ◽  
Hui Guan ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Defeng Zhao ◽  
Iida Pullinen ◽  
Hendrik Fuchs ◽  
Stephanie Schrade ◽  
Rongrong Wu ◽  
...  

<p><strong>       </strong>Highly oxygenated organic molecules (HOM) are found to play an important role in the formation and growth of secondary organic aerosol (SOA). SOA is an important type of aerosol with significant impact on air quality and climate. Compared to the oxidation of volatile organic compounds by O<sub>3</sub> and OH, HOM formation in the oxidation by NO<sub>3</sub> radical, an important oxidant at night-time and dawn, has received less attention. In this study, HOM formation in the reaction of isoprene with NO<sub>3</sub> was investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). A large number of HOM including monomers (C<sub>5</sub>), dimers (C<sub>10</sub>), and trimers (C<sub>15</sub>), both closed-shell compounds and open-shell peroxy radicals, were detected. HOM were classified into various series according to their formula, which included monomers containing one or more N atoms, dimers containing 1-4 N atoms, and trimers containing 3-5 N atoms. Tentative formation pathways of HOM were proposed reflecting known NO<sub>3</sub> and RO<sub>2</sub> chemistry in the literature under consideration of the autoxidation via peroxy pathways and peroxy-alkoxy pathways. Further mechanistic constraints were given by the time profiles of HOM after sequential isoprene addition which enabled to differentiate first- and second-generation products. Total HOM molar yield was estimated, which suggests that HOM may contribute a significant fraction to SOA yield in the reaction of isoprene with NO<sub>3</sub>.</p>


Sign in / Sign up

Export Citation Format

Share Document