scholarly journals Local Spin and Open Quantum Systems: Clarifying Misconceptions, Unifying Approaches

Author(s):  
Angel Martín Pendás ◽  
Evelio Francisco

<p>We now show that Clark and Davidson local spins operators are perfectly defined subsystem operators if a fragment is taken as an <i>open quantum system</i> (OQS). Open systems have become essential in quantum control and quantum computation, but have not received much attention in Chemistry. We have already shown (<i>J. Chem. Theory Comput</i>. <b>2018</b>, <i>15</i>, 1079) how real space OQSs can be defined in molecular systems and how they offer new insights relating quantum mechanical entaglement and chemical bonding. The OQS account of local spin that we offer yields a rigorous, yet easily accessible way to rationalize local spin values. A fragment is found in a mixed state direct sum of sectors characterized by different number of electrons that occur with different probabilities. The local spin is then a weighted sum of otherwise standard <i>S</i>(<i>S</i>+1) values. With OQS glasses, it is obvious that atomic or fragment spins should not vanish. Our approach thus casts doubts on any procedure used to annihilate them, like those used by Mayer and coworkers. OQS local spins allow for a fruitful use of models. One can propose easily sector probabilities for localized, covalent, ionic, zwitterionic, etc. situations, and examine their ideal local spins. We have mapped all 2c-2e cases, and shown how to do that in general multielectron cases. The role of electron correlation is also studied by tuning the Hubbard U/t parameter for H chains. Correlation induced localization changes the spin-coupling patterns even qualitatively, and show how the limiting antiferromagnet arises.</p>

2020 ◽  
Author(s):  
Angel Martín Pendás ◽  
Evelio Francisco

<p>We now show that Clark and Davidson local spins operators are perfectly defined subsystem operators if a fragment is taken as an <i>open quantum system</i> (OQS). Open systems have become essential in quantum control and quantum computation, but have not received much attention in Chemistry. We have already shown (<i>J. Chem. Theory Comput</i>. <b>2018</b>, <i>15</i>, 1079) how real space OQSs can be defined in molecular systems and how they offer new insights relating quantum mechanical entaglement and chemical bonding. The OQS account of local spin that we offer yields a rigorous, yet easily accessible way to rationalize local spin values. A fragment is found in a mixed state direct sum of sectors characterized by different number of electrons that occur with different probabilities. The local spin is then a weighted sum of otherwise standard <i>S</i>(<i>S</i>+1) values. With OQS glasses, it is obvious that atomic or fragment spins should not vanish. Our approach thus casts doubts on any procedure used to annihilate them, like those used by Mayer and coworkers. OQS local spins allow for a fruitful use of models. One can propose easily sector probabilities for localized, covalent, ionic, zwitterionic, etc. situations, and examine their ideal local spins. We have mapped all 2c-2e cases, and shown how to do that in general multielectron cases. The role of electron correlation is also studied by tuning the Hubbard U/t parameter for H chains. Correlation induced localization changes the spin-coupling patterns even qualitatively, and show how the limiting antiferromagnet arises.</p>


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zelong Yin ◽  
Chunzhen Li ◽  
Jonathan Allcock ◽  
Yicong Zheng ◽  
Xiu Gu ◽  
...  

AbstractShortcuts to adiabaticity are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespread applications in quantum technologies, and various shortcuts to adiabaticity protocols have been demonstrated in closed systems. However, realizing shortcuts to adiabaticity for open quantum systems has presented a challenge due to the complex controls in existing proposals. Here, we present the experimental demonstration of shortcuts to adiabaticity for open quantum systems, using a superconducting circuit quantum electrodynamics system. By applying a counterdiabatic driving pulse, we reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns. In addition, we propose and implement an optimal control protocol to achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our results pave the way for precise time-domain control of open quantum systems and have potential applications in designing fast open-system protocols of physical and interdisciplinary interest, such as accelerating bioengineering and chemical reaction dynamics.


Author(s):  
Ángel Martín Pendás ◽  
Evelio Francisco

The theory of open quantum systems (OQSs) is applied to partition the squared spin operator into fragment (local spin) and interfragment (spin-coupling) contributions in a molecular system. An atomic or...


2019 ◽  
Vol 26 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Frederik vom Ende ◽  
Gunther Dirr ◽  
Michael Keyl ◽  
Thomas Schulte-Herbrüggen

In quantum systems theory one of the fundamental problems boils down to: given an initial state, which final states can be reached by the dynamic system in question. Here we consider infinite-dimensional open quantum dynamical systems following a unital Kossakowski–Lindblad master equation extended by controls. More precisely, their time evolution shall be governed by an inevitable potentially unbounded Hamiltonian drift term H0, finitely many bounded control Hamiltonians Hj allowing for (at least) piecewise constant control amplitudes [Formula: see text] plus a bang-bang (i.e., on-off) switchable noise term ГV in Kossakowski–Lindblad form. Generalizing standard majorization results from finite to infinite dimensions, we show that such bilinear quantum control systems allow to approximately reach any target state majorized by the initial one as up to now it only has been known in finite dimensional analogues. The proof of the result is currently limited to the bounded control Hamiltonians Hj and for noise terms ГV with compact normal V.


2017 ◽  
Vol 19 (8) ◽  
pp. 083011 ◽  
Author(s):  
M Hartmann ◽  
D Poletti ◽  
M Ivanchenko ◽  
S Denisov ◽  
P Hänggi

2005 ◽  
Vol 12 (02) ◽  
pp. 163-177 ◽  
Author(s):  
S. Nicolosi

Quantum mechanics must be regarded as open systems. On one hand, this is due to the fact that, like in classical physics, any realistic system is subjected to a coupling to an uncontrollable environment which influences it in a non-negligible way. The theory of open quantum systems thus plays a major role in many applications of quantum physics since perfect isolation of quantum system is not possible and since a complete microscopic description or control of the environment degrees of freedom is not feasible or only partially so [1]. Practical considerations therefore force one to seek for a simpler, effectively probabilistic description in terms of an open system. There is a close physical and mathematical connection between the evolution of an open system, the state changes induced by quantum measurements, and the classical notion of a stochastic process. The paper provides a bibliographic review of this interrelations, it shows the mathematical equivalence between markovian master equation and generalized piecewise deterministic processes [1] and it introduces the open system in an open observed environment model.


2018 ◽  
Vol 189 (05) ◽  
Author(s):  
Vladislav Yu. Shishkov ◽  
Evgenii S. Andrianov ◽  
Aleksandr A. Pukhov ◽  
Aleksei P. Vinogradov ◽  
A.A. Lisyansky

Sign in / Sign up

Export Citation Format

Share Document