scholarly journals Stacking Disorders in MixedAlkali Honeycomb Layered Oxide NaKNi2TeO6 and Feasibility for Mixed-Cation Transport

Author(s):  
Titus Masese ◽  
Yoshinobu Miyazaki ◽  
Josef Rizell ◽  
Godwill Mbiti Kanyolo ◽  
Chih-Yao Chen ◽  
...  

<b>We demonstrate the feasibility of using a combination of alkali atoms (Na and K) to develop a robust mixed-alkali honeycomb layered oxide NaKNi<sub>2</sub>TeO<sub>6</sub>. Through a series of atomic-resolution transmission electron microscopy in multiple zone axes, we reveal for the first time the local atomic structural disorders characterised by aperiodic stackings and incoherency in the alternating arrangement of Na and K atoms. Our findings indicate great structural versatility that renders NaKNi<sub>2</sub>TeO<sub>6</sub> an ideal platform for investigating other fascinating properties such as mixed ionic transport and intriguing electromagnetic and quantum phenomena amongst honeycomb layered oxides. Finally, we unveil the possibility of inducing mixed Na- and K-ion transport electrochemistry of NaKNi<sub>2</sub>TeO<sub>6</sub> at high voltages (~ 4V), thus epitomising it as a competent cathode candidate for the emerging dendrite-free batteries based on NaK liquid metal alloy as anodes. The results not only betoken a new avenue for developing functional materials with fascinating crystal versatility, but also prefigure a new age of ‘dendrite-free’ energy storage system designs that rely on mixed-cation electrochemistry.</b>

2020 ◽  
Author(s):  
Titus Masese ◽  
Yoshinobu Miyazaki ◽  
Josef Rizell ◽  
Godwill Mbiti Kanyolo ◽  
Chih-Yao Chen ◽  
...  

<b>We demonstrate the feasibility of using a combination of alkali atoms (Na and K) to develop a robust mixed-alkali honeycomb layered oxide NaKNi<sub>2</sub>TeO<sub>6</sub>. Through a series of atomic-resolution transmission electron microscopy in multiple zone axes, we reveal for the first time the local atomic structural disorders characterised by aperiodic stackings and incoherency in the alternating arrangement of Na and K atoms. Our findings indicate great structural versatility that renders NaKNi<sub>2</sub>TeO<sub>6</sub> an ideal platform for investigating other fascinating properties such as mixed ionic transport and intriguing electromagnetic and quantum phenomena amongst honeycomb layered oxides. Finally, we unveil the possibility of inducing mixed Na- and K-ion transport electrochemistry of NaKNi<sub>2</sub>TeO<sub>6</sub> at high voltages (~ 4V), thus epitomising it as a competent cathode candidate for the emerging dendrite-free batteries based on NaK liquid metal alloy as anodes. The results not only betoken a new avenue for developing functional materials with fascinating crystal versatility, but also prefigure a new age of ‘dendrite-free’ energy storage system designs that rely on mixed-cation electrochemistry.</b>


2021 ◽  
Author(s):  
Titus Masese ◽  
Yoshinobu Miyazaki ◽  
Josef Rizell ◽  
Godwill Mbiti Kanyolo ◽  
Chih-Yao Chen ◽  
...  

<b>We demonstrate the feasibility of using a combination of alkali atoms (Na and K) to develop a robust mixed-alkali honeycomb layered oxide NaKNi<sub>2</sub>TeO<sub>6</sub>. Through a series of atomic-resolution transmission electron microscopy in multiple zone axes, we reveal for the first time the local atomic structural disorders characterised by aperiodic stackings and incoherency in the alternating arrangement of Na and K atoms. Our findings indicate great structural versatility that renders NaKNi<sub>2</sub>TeO<sub>6</sub> an ideal platform for investigating other fascinating properties such as mixed ionic transport and intriguing electromagnetic and quantum phenomena amongst honeycomb layered oxides. Finally, we unveil the possibility of inducing mixed Na- and K-ion transport electrochemistry of NaKNi<sub>2</sub>TeO<sub>6</sub> at high voltages (~ 4V), thus epitomising it as a competent cathode candidate for the emerging dendrite-free batteries based on NaK liquid metal alloy as anodes. The results not only betoken a new avenue for developing functional materials with fascinating crystal versatility, but also prefigure a new age of ‘dendrite-free’ energy storage system designs that rely on mixed-cation electrochemistry.</b>


2020 ◽  
Author(s):  
Titus Masese ◽  
Yoshinobu Miyazaki ◽  
Josef Rizell ◽  
Godwill Mbiti Kanyolo ◽  
Teruo Takahashi ◽  
...  

<b>Honeycomb layered oxides have garnered tremendous research interest in a wide swath of disciplines owing to not only the myriad physicochemical properties they exhibit, but also due to their rich crystal structural versatility. Herein, a comprehensive crystallographic study of a sodium-based Na<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> honeycomb layered oxide has been performed using atomic-resolution transmission electron microscopy, elucidating a plethora of atomic arrangement (stacking) disorders in the pristine material. Stacking disorders in the arrangement honeycomb metal slab layers (stacking faults) occur predominantly perpendicular to the slabs with long-range coherence length and enlisting dislocations in some domains. Moreover, the periodic arrangement of the distribution of alkali atoms is altered by the occurrence of stacking faults. The multitude of disorders innate in Na<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> envisage broad implications in the material functionalities of related honeycomb layered oxide materials and will bolster renewed interest in their material science.</b>


2020 ◽  
Author(s):  
Titus Masese ◽  
Yoshinobu Miyazaki ◽  
Josef Rizell ◽  
Godwill Mbiti Kanyolo ◽  
Teruo Takahashi ◽  
...  

<b>Honeycomb layered oxides have garnered tremendous research interest in a wide swath of disciplines owing to not only the myriad physicochemical properties they exhibit, but also due to their rich crystal structural versatility. Herein, a comprehensive crystallographic study of a sodium-based Na<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> honeycomb layered oxide has been performed using atomic-resolution transmission electron microscopy, elucidating a plethora of atomic arrangement (stacking) disorders in the pristine material. Stacking disorders in the arrangement honeycomb metal slab layers (stacking faults) occur predominantly perpendicular to the slabs with long-range coherence length and enlisting dislocations in some domains. Moreover, the periodic arrangement of the distribution of alkali atoms is altered by the occurrence of stacking faults. The multitude of disorders innate in Na<sub>2</sub>Ni<sub>2</sub>TeO<sub>6</sub> envisage broad implications in the material functionalities of related honeycomb layered oxide materials and will bolster renewed interest in their material science.</b>


2020 ◽  
Vol 13 (4) ◽  
pp. 1269-1278 ◽  
Author(s):  
Kyojin Ku ◽  
Byunghoon Kim ◽  
Sung-Kyun Jung ◽  
Yue Gong ◽  
Donggun Eum ◽  
...  

We propose a new lithium diffusion model involving coupled lithium and transition metal migration, peculiarly occurring in a lithium-rich layered oxide.


2016 ◽  
Vol 136 (11) ◽  
pp. 824-832 ◽  
Author(s):  
Mami Mizutani ◽  
Takenori Kobayashi ◽  
Katsunori Watabe ◽  
Tomoki Wada

Sign in / Sign up

Export Citation Format

Share Document